MCP Deployment Guide

version g4-18

Mirantis Cloud Platform Deployment Guide

Copyright notice

2025 Mirantis, Inc. All rights reserved.

This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.

Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.

Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

©2025, Mirantis Inc. Page 2

Mirantis Cloud Platform Deployment Guide

Preface

This documentation provides information on how to use Mirantis products to deploy cloud
environments. The information is for reference purposes and is subject to change.

Intended audience

This documentation is intended for deployment engineers, system administrators, and
developers; it assumes that the reader is already familiar with network and cloud concepts.

Documentation history

The following table lists the released revisions of this documentation:

Revision date Description

February 8, 2019 Q4°18 GA

©2025, Mirantis Inc. Page 3

Mirantis Cloud Platform Deployment Guide

Introduction

MCP enables you to deploy and manage cloud platforms and their dependencies. These include
OpenStack and Kubernetes based clusters.

The deployment can be performed automatically through MCP DriveTrain or using the manual
deployment procedures.

The MCP DriveTrain deployment approach is based on the bootstrap automation of the Salt
Master node that contains MAAS hardware nodes provisioner as well as on the automation of an
MCP cluster deployment using the Jenkins pipelines. This approach significantly reduces your
time and eliminates possible human errors.

The manual deployment approach provides the ability to deploy all the components of the cloud
solution in a very granular fashion.

The guide also covers the deployment procedures for additional MCP components including
OpenContrail, Ceph, StackLight, NFV features.

Seealso

Minimum hardware requirements

©2025, Mirantis Inc. Page 4

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/openstack-ref-arch.html

Mirantis Cloud Platform Deployment Guide

Plan the deployment

The configuration of your MCP installation depends on the individual requirements that should
be met by the cloud environments.

The detailed plan of any MCP deployment is determined on a per-cloud basis. For the MCP
reference architecture and design overview, see: MCP Reference Architecture: Plan an
OpenStack environment or MCP Reference Architecture: Plan a Kubernetes cluster depending on
the type of your deployment.

Caution!

Kubernetes support termination notice

Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

At the same time, MCP provides a flexible reduced prebuilt mirror image that you can customize
depending on the needs of your MCP deployment after the initial bootstrap is performed. The
usage of the prebuilt mirror image is essential in case of an offline MCP deployment scenario.
The prebuilt mirror image contains the Debian package mirror (Aptly or flat deb repositories),
Docker images mirror (Registry), Git repositories mirror, and mirror of the Mirantis Ubuntu VM
cloud images (VCP). This guide includes the steps required for the case with the additional
prebuilt VM deployment on the Foundation node.

©2025, Mirantis Inc. Page 5

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/kubernetes-cluster-plan.html
https://github.com/salt-formulas

Mirantis Cloud Platform Deployment Guide

Prepare for the deployment

Create a project repository

An MCP cluster deployment configuration is stored in a Git repository created on a per-customer
basis. This section instructs you on how to manually create and prepare your project repository
for an MCP deployment.

Before you start this procedure, create a Git repository in your version control system, such as
GitHub.

To create a project repository manually:

1. Log in to any computer.
2. Create an empty directory and change to that directory. In the example below, it is mcpdoc.

3. Initialize your project repository:
git init
Example of system response:
Initialized empty Git repository in /Users/crh/Dev/mcpdoc/.git/
4. Add your repository to the directory you have created:

git remote add origin <YOUR-GIT-REPO-URL>

5. Verify that Git and your local repository are set up correctly by creating and pushing a test
file to your project repository. Run the following example commands:

Note

The example commands below require the Git and GitHub credentials to be created
and configured for your project repository.

git remote add origin https://github.com/example_account/mcpdoc.git
git config --local user.email "example@example.com"

git config --local user.name "example_gituser"

git config -I

echo "#. mcpdoc" >> README.md
git add README.md

git commit -m "first commit"

git push -u origin master

©2025, Mirantis Inc. Page 6

Mirantis Cloud Platform Deployment Guide

6. Create the following directories for your deployment metadata model:

mkdir -p classes/cluster
mkdir nodes

7. Add the Reclass variable to your bash profile by verifying your current directory using pwd
and adding the string that exports the Reclass variable with the output value of the pwd
command:

pwd
vim ~/.bash_profile
export RECLASS REPO=<PATH_TO_YOUR_DEV_DIRECTORY>

Example of system response:

/Users/crh/Dev/mcpdoc/

"~/.bash_profile" 13L, 450C
export RECLASS REPO="/Users/crh/Dev/mcpdoc/"

8. Log out and log back in.
9. Verify that your ~/.bash_profile is sourced:

echo $RECLASS_REPO

The command must show the value of your RECLASS REPO variable.
Example of system response:

/Users/crh/Dev/mcpdoc/

10 Add the Mirantis Reclass module to your repository as a submodule:

git submodule add https://github.com/Mirantis/reclass-system-salt-model ./classes/system/

Example of system response:

Cloning into '<PATH_TO_YOUR_DEV_DIRECTORY>/classes/system'...
remote: Counting objects: 8923, done.

remote: Compressing objects: 100% (214/214), done.

remote: Total 8923 (delta 126), reused 229 (delta 82), pack-reused 8613
Receiving objects: 100% (8923/8923), 1.15 MiB | 826.00 KiB/s, done.
Resolving deltas: 100% (4482/4482), done.

Checking connectivity... done.

©2025, Mirantis Inc. Page 7

Mirantis Cloud Platform Deployment Guide

11 Update the submodule:

git submodule sync
git submodule update --init --recursive --remote

12 Add your changes to a new commit:
git add -A

13 Commit your changes:
git commit

14 Add your commit message.

" Example of system response:

[master (root-commit) 9466ada] Initial Commit
2 files changed, 4 insertions(+)

create mode 100644 .gitmodules

create mode 160000 classes/system

15 Push your changes:

git push

16 Proceed to Create a deployment metadata model.

©2025, Mirantis Inc.

Page 8

Mirantis Cloud Platform Deployment Guide

Create a deployment metadata model

In @ Reclass metadata infrastructural model, the data is stored as a set of several layers of
objects, where objects of a higher layer are combined with objects of a lower layer, that allows
for as flexible configuration as required.

The MCP metadata model has the following levels:

e Service level includes metadata fragments for individual services that are stored in Salt
formulas and can be reused in multiple contexts.

* System level includes sets of services combined in a such way that the installation of these
services results in a ready-to-use system.

e Cluster level is a set of models that combine already created system objects into different
solutions. The cluster module settings override any settings of service and system levels
and are specific for each deployment.

The model layers are firmly isolated from each other. They can be aggregated on a south-north
direction using service interface agreements for objects on the same level. Such approach allows
reusing of the already created objects both on service and system levels.

This section describes how to generate the cluster level metadata model for your MCP cluster
deployment using the Model Designer web Ul. The tool used to generate the model is
Cookiecutter, a command-line utility that creates projects from templates.

While generating a metadata model, you can enable automated encryption of all secrets for the
Salt Master node .iso file.

Note

The Model Designer web Ul is only available within Mirantis. The Mirantis deployment
engineers can access the Model Designer web Ul using their Mirantis corporate username
and password.

The workflow of a model creation includes the following stages:

1. Defining the model through the Model Designer web Ul.
2. Optional. Tracking the execution of the model creation pipeline in the Jenkins web Ul.

3. Obtaining the generated model to your email address or getting it published to the project
repository directly.

Note

If you prefer publishing to the project repository, verify that the dedicated repository
is configured correctly and Jenkins can access it. See Create a project repository for
details.

©2025, Mirantis Inc. Page 9

https://mm.mcp.mirantis.net/integration/

Mirantis Cloud Platform Deployment Guide

As a result, you get a generated deployment model and can customize it to fit specific
use-cases. Otherwise, you can proceed with the base infrastructure deployment.

Enable all secrets encryption

The Model Designer Ul supports passing a private key to enable automated encryption of
secrets.yml during the Salt Master node .iso file generation.

To enable all secrets encryption in the Model Designer Ul:

1. Generate a private PGP key locally. For example:

mkdir -p ~/mcp-temp-gpg-key ; cd ~/mcp-temp-gpg-key

cd cat <<EOF > gpg-batch.txt

Key-Type: 1

Key-Length: 4096

Expire-Date: 0

Name-Real: gpg-demo.com

Name-Email: saltmasterdemo@example.com

EOF

export GNUPGHOME="$(pwd)/gpghome" ; mkdir -p gpghome ; chmod 0700 gpghome
gpg --gen-key --batch < gpg-batch.txt

gpg --export-secret-key -a saltmasterdemo@example.com > gpgkey.asc
gpg --list-secret-keys

2. Copy the generated private PGP key:

cat gpgkey.asc

Example of system response:

Version: GnuPG v1

IQcYBFYKM7kBEADGUGP/LpOYRMY/vLW7VOF5Sox1rnu21z6YgqnNQ2J+ZHVIPA9R

3. Proceed with the metadata model generation as described in Define the deployment model.
While generating the metadata model, enable the following parameters:

* In General -> Services section, select Secrets Encryption Enabled

* In Infra -> Salt Master section, paste the private key to the Secrets Encryption Private
Key field

4. Proceed to the metadata model generation.

©2025, Mirantis Inc. Page 10

Mirantis Cloud Platform Deployment Guide

Seealso

MCP Operations Guide: Manage secrets in the Reclass model

©2025, Mirantis Inc. Page 11

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/drive-train-operations/manage-secrets-reclass-model.html

Mirantis Cloud Platform Deployment Guide

Define the deployment model

This section instructs you on how to define the cluster level metadata model through the web Ul
using Cookiecutter. Eventually, you will obtain a generic deployment configuration that can be
overriden afterwards.

Note

The Model Designer web Ul is only available within Mirantis. The Mirantis deployment
engineers can access the Model Designer web Ul using their Mirantis corporate username
and password.

Note

Currently, Cookiecutter can generate models with basic configurations. You may need to
manually customize your model after generation to meet specific requirements of your
deployment, for example, four interfaces bonding.

To define the deployment model:

. Log in to the web UI.
. Go to Integration dashboard > Models > Model Designer.

. Click Create Model. The Create Model page opens.

H W N

. Configure your model by selecting a corresponding tab and editing as required:

1. Configure General deployment parameters. Click Next.
2. Configure Infrastructure related parameters. Click Next.

3. Configure Product related parameters. Click Next.
5. Verify the model on the Output summary tab. Edit if required.

6. Click Confirm to trigger the Generate reclass cluster separated-products-auto Jenkins
pipeline. If required, you can track the success of the pipeline execution in the Jenkins web
ul.

If you selected the Send to e-mail address publication option on the General parameters tab, you
will receive the generated model to the e-mail address you specified in the Publication options >
Email address field on the Infrastructure parameters tab. Otherwise, the model will automatically
be pushed to your project repository.

Seealso

©2025, Mirantis Inc. Page 12

https://mm.mcp.mirantis.net/integration/

Mirantis Cloud Platform Deployment Guide

* Create a project repository

* Publish the deployment model to a project repository

©2025, Mirantis Inc. Page 13

Mirantis Cloud Platform Deployment Guide

General deployment parameters

The tables in this section outline the general configuration parameters that you can define for
your deployment model through the Model Designer web Ul. Consult the Define the deployment
model section for the complete procedure.

The General deployment parameters wizard includes the following sections:

* Basic deployment parameters cover basic deployment parameters

* Services deployment parameters define the platform you need to generate the model for

* Networking deployment parameters cover the generic networking setup for a dedicated
management interface and two interfaces for the workload. The two interfaces for the
workload are in bond and have tagged sub-interfaces for the Control plane (Control
network/VLAN) and Data plane (Tenant network/VLAN) traffic. The PXE interface is not
managed and is leaved to default DHCP from installation. Setups for the NFV scenarios are
not covered and require manual configuration.

Parameter

Cluster name

Basic deployment parameters

Default JSON output

cluster_name: deployment_name

Description

The name of the cluster that will be
used as cluster/<cluster_name>/ in
the project directory structure

Cluster domain

cluster_domain: deploy-name.local

The name of the domain that will be
used as part of the cluster FQDN

Public host public_host: ${_param:openstack p | The name or IP address of the
roxy_address} public endpoint for the deployment

Reclass reclass_repository: https://github.co | The URL to your project Git

repository m/Mirantis/mk-lab-salt-model.qgit repository containing your models

Cookiecutter
template URL

cookiecutter_template_url: git@gith
ub.com:Mirantis/mk2x-cookiecutter-
reclass-model.qgit

The URL to the Cookiecutter
template repository

Cookiecutter
template branch

cookiecutter_template_branch: mas
ter

The branch of the Cookiecutter
template repository to use, master
by default. Use
refs/tags/<mcp_version> to
generate the model that
corresponds to a specific MCP
release version. For example,
2017.12. Other possible values
include stable and testing.

Shared Reclass
URL

shared_reclass_url: ssh://mcp-jenkin
s@gerrit.mcp.mirantis.net:29418/sa
It-models/reclass-system.git

The URL to the shared system
model to be used as a Git
submodule for the MCP cluster

©2025, Mirantis Inc.

Page 14

Mirantis Cloud Platform Deployment Guide

MCP version mcp_version: stable Version of MCP to use, stable by
default. Enter the release version
number, for example, 2017.12.
Other possible values are: nightly,
testing. For nightly, use cookiecutte
r_template_branch: master.

Cookiecutter cookiecutter _template_credentials: Credentials to Gerrit to fetch the
template gerrit Cookiecutter templates repository.
credentials The parameter is used by Jenkins
Deployment deployment_type: physical The supported deployment types
type include:

* Physical for the OpenStack
platform

* Physical and Heat for the
Kubernetes platform

Publication publication_method: email The method to obtain the template.
method Available options include:

* Send to the e-mail address

* Commit to repository

Services deployment parameters

Parameter Default JSON output Description

Platform The platform to generate the model
* platform: openstack_enabled for:

e platform: kubernetes_enabled . The OpenStack platform

supports OpenContrail,
StackLight LMA, Ceph, CI/CD,
and 0SS sub-clusters
enablement. If the

OpenContrail is not enabled,
the model will define OVS as a
network engine.

* The Kubernetes platform
supports StackLight LMA and
Cl/CD sub-clusters enablement,
OpenContrail networking, and
presupposes Calico networking.
To wuse the default Calico

plugin, uncheck the
OpenContrail enabled check
box.

©2025, Mirantis Inc. Page 15

Mirantis Cloud Platform Deployment Guide

StackLight stacklight_enabled: True' Enables a StackLight LMA
enabled sub-cluster.

Gainsight gainsight_service_enabled: 'False’ Enables support for the

service enabled Salesforce/Gainsight service
Salesforce sf notifications_enabled: 'False’ Enables sending of Alertmanager
notifications notifications to Salesforce
enabled

Ceph enabled

ceph_enabled: True'

Enables a Ceph sub-cluster.

CI/CD enabled

cicd_enabled: "True'

Enables a CI/CD sub-cluster.

0SS enabled

0ss_enabled: 'True'

Enables an OSS sub-cluster.

Benchmark node
enabled

bmk_enabled: 'False'

Enables a benchmark node. False,
by default.

Barbican
enabled

barbican_enabled: 'False’

Enables the Barbican service

Backend for
Barbican

barbican_backend: dogtag

The backend for Barbican

Parameter

Networking deployment parameters

Default JSON output

Description

DNS Server 01

dns_server(Ql: 8.8.8.8

The IP address of the dns01 server

DNS Server 02

dns_server02: 1.1.1.1

The IP address of the dns02 server

Deploy network
subnet

deploy_network subnet: 10.0.0.0/24

The IP address of the deploy
network with the network mask

Deploy network
gateway

deploy_network gateway: 10.0.0.1

The IP gateway address of the
deploy network

Control network
subnet

control_network subnet: 10.0.1.0/2
4

The IP address of the control
network with the network mask

Tenant network
subnet

tenant_network_subnet: 10.0.2.0/24

The IP address of the tenant
network with the network mask

Tenant network

tenant_network gateway: 10.0.2.1

The IP gateway address of the

gateway tenant network
Control VLAN control_vlan: '10' The Control plane VLAN ID
Tenant VLAN tenant_vlan: '20' The Data plane VLAN ID

©2025, Mirantis Inc.

Page 16

Mirantis Cloud Platform Deployment Guide

NTP servers
Added since

2019.2.6 update

0.pool.ntp.org,1.pool.ntp.org

The comma-separated list of
Network Time Protocol (NTP)
servers. You can also configure
multiple NTP servers as required,
for example, serverl.ntp.org,server
2.ntp.org,server3.ntp.org.

©2025, Mirantis Inc.

Page 17

Mirantis Cloud Platform Deployment Guide

Infrastructure related parameters

The tables in this section outline the infrastructure configuration parameters you can define for
your deployment model through the Model Designer web Ul. Consult the Define the deployment
model section for the complete procedure.

The Infrastructure deployment parameters wizard includes the following sections:

* Salt Master

* Ubuntu MAAS

* Publication options

¢ Kubernetes Storage

» Kubernetes Networking

* OpenStack cluster sizes

* OpenStack or Kuberbetes networking
* Ceph

» CI/CD

* Alertmanager email notifications

» Alertmanager Salesforce notifications
* 0SS

* Repositories

* Nova
Salt Master

Parameter Default JSON output Description
Salt Master salt master_address: 10.0.1.15 The IP address of the Salt Master
address node on the control network
Salt Master salt_master_management_address: | The IP address of the Salt Master
management 10.0.1.15 node on the management network
address
Salt Master salt_ master_hostname: cfg01 The hostname of the Salt Master
hostname node
Secrets secrets_encryption_enabled: 'False' | Encrypt sensitive data in the
encryption Reclass model
enabled
Secrets secrets_encryption_private key: " PGP keypair for the sensitive data
encryption encryption. If not specified, the key
private key will be generated automatically.

©2025, Mirantis Inc.

Page 18

Mirantis Cloud Platform Deployment Guide

Parameter

Ubuntu MAAS

Default JSON output

Description

MAAS hostname

The hostname of the MAAS virtual
server

maas_hostname: cfg01

MAAS deploy maas_deploy_address: 10.0.0.15 The IP address of the MAAS control
address on the deploy network

MAAS fabric deploy fabric The MAAS fabric name for the
name deploy network

MAAS deploy deploy_network The MAAS deploy network name
network name

MAAS deploy 10.0.0.20 The first IP address of the deploy
range start network range

MAAS deploy 10.0.0.230 The last IP address of the deploy
range end network range

Parameter

Publication options

Default JSON output

Description

Email address

The email address where the
generated Reclass model will be
sent to

email_address: <your-email>

Parameter

Kubernetes Storage

Default JSON output

Description

Kubernetes rbd
enabled

False Enables a connection to an existing
external Ceph RADOS Block Device
(RBD) storage. Requires additional
parameters to be configured in the
Product parameters section. For
details, see: Product related

parameters.

Kubernetes Networking

Parameter

Kubernetes
metallb enabled

Default JSON output

Description

Enables the MetalLB add-on that
provides a network load balancer
for bare metal Kubernetes clusters
using standard routing protocols.
For the deployment details, see:
Enable the MetallLB support.

False

©2025, Mirantis Inc.

Page 19

Mirantis Cloud Platform Deployment Guide

Kubernetes
ingressnginx
enabled

False

Enables the NGINX Ingress
controller for Kubernetes. For the
deployment details, see: Enable the
NGINX Ingress controller.

Parameter

OpenStack cluster sizes

Default JSON output

Description

OpenStack
cluster sizes

openstack_cluster _size: compact

A predefined number of compute
nodes for an OpenStack cluster.
Available options include: few for a
minimal cloud, up to 50 for a
compact cloud, up to 100 for a
small cloud, up to 200 for a medium
cloud, up to 500 for a large cloud.

Parameter

OpenStack or Kuberbetes networking

OpenStack
network engine

Default JSON output

openstack _network _engine: openco
ntrail

Description

Available options include
opencontrail and ovs.

NFV feature generation is
experimental. The OpenStack Nova
compute NFV req enabled
parameter is for enabling
Hugepages and CPU pinning without
DPDK.

Kubernetes
network engine

kubernetes network _engine: openc
ontrail

Available options include calico and
opencontrail. This parameter is set
automatically. If you uncheck the
OpenContrail enabled field in the
General parameters section, the
default Calico plugin is set as the
Kubernetes networking.

Parameter

Ceph

Default JSON output

Description

Ceph version luminous The Ceph version
Ceph OSD bluestore The OSD backend type
backend

©2025, Mirantis Inc.

Page 20

Mirantis Cloud Platfo

rm Deployment Guide

Backend
network subnet

backend_network subnet: 10.0.2.0/
24

The IP address of Ceph backend
network with the network mask.
Used as cluster_network for OSD
data replication

Backend VLAN

backend_vlan: 30

The Ceph backend VLAN ID used for
OSD data replication on
cluster_network

Cl/CD

Parameter

OpenLDAP
enabled

Default JSON output

openldap_enabled: "True'

Description

Enables OpenLDAP authentication.

OpenLDAP name

openldap_domain: openldap-domai
n.local

OpenLDAP domain name. Must
match the ~[a-z0-9.-1+$ regular
expression and not contain any
special symbols.

Parameter

Alertmanager
email
notifications
enabled

Alertmanager email notifications

Default JSON output

alertmanager_notification_email_en
abled: 'False'

Description

Enables email notifications using
the Alertmanager service

Alertmanager
notification
email from

alertmanager_notification_email_fro
m: john.doe@example.org

Alertmanager email notifications
sender

Alertmanager
notification
email to

alertmanager_notification_email_to:
jane.doe@example.org

Alertmanager email notifications
receiver

Alertmanager

alertmanager_notification_email_ho

The address of the SMTP host for

email stname: 127.0.0.1 alerts notifications

notifications

SMTP host

Alertmanager alertmanager_notification_email po | The address of the SMTP port for
email rt: 587 alerts notifications

notifications

SMTP port

Alertmanager alertmanager_notification_email re | Enable using of the SMTP server
email quire_tls: 'True' under TLS (for alerts notifications)
notifications

with TLS

©2025, Mirantis Inc.

Page 21

Mirantis Cloud Platform Deployment Guide

Alertmanager
notification
email password

alertmanager_notification_email_pa
ssword: password

The sender-mail password for alerts
notifications

Parameter

Alertmanager Salesforce notifications

Salesforce
notifier SFDC
authentication
URL

Default JSON output
sf notifier_sfdc_auth_url: URL

Description

The authentication URL for the
Salesforce service

Salesforce sf notifier_sfdc_username: john.doe | The customer account user name
notifier SFDC @example.org for the Salesforce service
username

Salesforce sf notifier_sfdc_password: password | The customer account password for
notifier SFDC the Salesforce service

password

Salesforce sf notifier_sfdc_organization_id: 000 | The organization ID for the

notifier SFDC
organization ID

1

Salesforce service

Salesforce
notifier SFDC
environment ID

sf notifier_sfdc_environment _id: 00
01

The cloud ID in Salesforce

Salesforce
notifier SFDC
sandbox
enabled

sf notifier_sfdc_sandbox_enabled: '
True'

Enable sandbox support for the
Salesforce service

0SS

Parameter
0SS CIS enabled

Default JSON output

Cis_enabled: True'

Description

Enables the Cloud Intelligence
Service

0SS Security
Audit enabled

0ss_security_audit_enabled: 'True'

Enables the Security Audit service

0SS Cleanup 0ss_cleanup_service_enabled: 'True' | Enables the Cleanup Service
Service enabled
0SS SFDC oss_sfdc_support_enabled: True" Enables synchronization of your

support enabled

SalesForce account with OSS

Repositories

©2025, Mirantis Inc.

Page 22

Mirantis Cloud Platform Deployment Guide

Parameter Default JSON output Description
Local local_repositories: 'False’ If true, changes repositories URLs to
repositories local mirrors. The local_repo_url

parameter should be added
manually after model generation.

Nova
Parameter Default JSON output Description
Nova VNC TLS nova_vnc_tls _enabled: 'False' If True, enables the TLS encryption
enabled for communications between the
OpenStack compute nodes and VNC
clients.

©2025, Mirantis Inc. Page 23

Mirantis Cloud Platform Deployment Guide

Product related parameters

The tables in this section outline the product configuration parameters including infrastructure,
Cl/CD, OpenContrail, OpenStack, Kubernetes, Stacklight LMA, and Ceph hosts details. You can
configure your product infrastructure for the deployment model through the Model Designer web
Ul. Consult the Define the deployment model section for the complete procedure.

The Product deployment parameters wizard includes the following sections:

¢ Infrastructure product parameters

* CI/CD product parameters

* OSS parameters

¢ OpenContrail service parameters

¢ OpenStack product parameters

e Kubernetes product parameters

» StackLight LMA product parameters

¢ Ceph product parameters

Infrastructure product parameters

Default JSON output Description

Infra kvmO1 infra_kvmO01_hostname: kvmO01 The hostname of the first

hostname KVM node

Infra kvmO1 infra_kvmO1_control_address: 10.0.1.24 | The IP address of the first

control address 1 KVM node on the control
network

Infra kvmO1 infra_kvmO01 deploy address: 10.0.0.24 | The IP address of the first

deploy address 1 KVM node on the
management network

Infra kvmO02 infra_kvmO02_hostname: kvm02 The hostname of the second

hostname KVM node

Infra kvmO02 infra_kvmO02_control_address: 10.0.1.24 | The IP address of the second

control address 2 KVM node on the control
network

Infra kvmO02 infra_kvmO02_deploy address: 10.0.0.24 | The IP address of the second

deploy address 2 KVM node on the
management network

Infra kvmO03 infra_kvmO03_hostname: kvm03 The hostname of the third

hostname KVM node

Infra kvmO03 infra_kvmO03_control_address: 10.0.1.24 | The IP address of the third

control address 3 KVM node on the control
network

©2025, Mirantis Inc. Page 24

Mirantis Cloud Platform Deployment Guide

Infra kvmO3
deploy address

infra_kvmO03_deploy address: 10.0.0.24
3

The IP address of the third
KVM node on the
management network

Infra KVM VIP
address

infra_kvm_vip_address: 10.0.1.240

The virtual IP address of the
KVM cluster

Infra deploy NIC

infra_deploy_nic: ethO

The NIC used for PXE of the
KVM hosts

Infra primary first
NIC

infra_primary_first_nic: ethl

The first NIC in the KVM bond

Infra primary
second NIC

infra_primary_second_nic: eth2

The second NIC in the KVM
bond

Infra bond mode

infra_bond_mode: active-backup

The bonding mode for the
KVM nodes. Available options
include:

* active-backup
* balance-xor

* broadcast

» 802.3ad

* balance-Itb

* balance-alb
To decide which bonding

mode best suits the needs of
your deployment, you can
consult the official Linux
bonding documentation.

OpenStack
compute count

openstack_compute_count: '100'

The number of compute
nodes to be generated. The
naming convention for
compute nodes is cmp000 - ¢
mp${openstack_compute_co
unt}. If the value is 100, for
example, the host names for
the compute nodes expected
by Salt include cmp000,
c¢cmp001, ..., cmpl0O0.

CI/CD product parameters

Section

CI/CD control
nodeO1 address

Default JSON output
cicd_control_node0Ol1 address: 10.0.1.91

Description

The IP address of the first
CI/CD control node

©2025, Mirantis Inc.

Page 25

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Mirantis Cloud Platform Deployment Guide

CI/CD control
node01 hostname

cicd_control_node01 hostname: cid01

The hostname of the first
CI/CD control node

CI/CD control
node02 address

cicd_control_node02_address: 10.0.1.92

The IP address of the second
CI/CD control nod

CI/CD control
node02 hostname

cicd_control_node02_hostname: cid02

The hostname of the second
CI/CD control node

CI/CD control
node03 address

cicd_control_node03 address: 10.0.1.93

The IP address of the third
CI/CD control node

CI/CD control
node03 hostname

cicd_control_node03_hostname: cid03

The hostname of the third
CI/CD control node

CI/CD control VIP
address

cicd_control_vip_address: 10.0.1.90

The virtual IP address of the
CI/CD control cluster

CI/CD control VIP
hostname

cicd_control_vip_hostname: cid

The hostname of the CI/CD
control cluster

Section
OSS address

0SS parameters

Default JSON output

oss_address: ${ param:stacklight monit
or_address}

Description

VIP address of the OSS
cluster

0SS node01 0oss_node01 addres: ${ param:stackligh | The IP address of the first
address t monitorO01_address} 0SS node

0SS node02 0ss_node02_addres: ${ param:stackligh | The IP address of the second
address t monitor02_address} 0SS node

0SS node03 0ss_node03_addres: ${ param:stackligh | The IP address of the third
address t monitor03_address} 0SS node

0SS OpenStack oss_openstack_auth_url: http://172.17.1 | OpenStack auth URL for OSS
auth URL 6.190:5000/v3 tools

0SS OpenStack 0ss_openstack_username: admin Username for access to
username OpenStack

0SS OpenStack 0oss_openstack password: nova Password for access to
password OpenStack

0SS OpenStack
project

0ss_openstack_project: admin

OpenStack project name

0SS OpenStack

oss_openstack_domain_id: default

OpenStack domain ID

domain ID
0SS OpenStack oss_openstack_ssl verify: 'False' OpenStack SSL verification
SSL verify mechanism

©2025, Mirantis Inc.

Page 26

Mirantis Cloud Platform Deployment Guide

0SS OpenStack
certificate

oss_openstack cert: "

OpenStack plain CA
certificate

0SS OpenStack
credentials path

0ss_openstack credentials_path: /srv/vo
lumes/rundeck/storage

OpenStack credentials path

0SS OpenStack
endpoint type

oss_openstack_endpoint_type: public

Interface type of OpenStack
endpoint for service
connections

0SS Rundeck
external
datasource
enabled

oss_rundeck _external _datasource_enabl
ed: False

Enabled external datasource
(PostgreSQL) for Rundeck

0SS Rundeck
forward iframe

rundeck forward_iframe: False

Forward iframe of Rundeck
through proxy

0SS Rundeck

rundeck _iframe_host: ${ param:openst

IP address for Rundeck

iframe host ack _proxy address} configuration for proxy

0SS Rundeck rundeck_iframe_port: ${ param:haprox | Port for Rundeck through
iframe port y_rundeck _exposed port} proxy

0SS Rundeck rundeck_iframe_ssl: False Secure Rundeck iframe with
iframe ssl SSL

0SS webhook from

0ss_webhook from: TEXT

Required. Notification email
sender.

0SS webhook
recipients

0ss_webhook_recipients: TEXT

Required. Notification email
recipients.

OSS Pushkin SMTP
host

0ss_pushkin_smtp_host: 127.0.0.1

The address of SMTP host for
alerts notifications

0SS Pushkin SMTP
port

0ss_pushkin_smtp_port: 587

The address of SMTP port for
alerts notifications

0SS notification
SMTP with TLS

0ss_pushkin_smtp_use tls: 'True'

Enable using of the SMTP
server under TLS (for alert
notifications)

OSS Pushkin email
sender password

0ss_pushkin_email _sender_password: pa
ssword

The sender-mail password for
alerts notifications

SFDC auth URL

N/A

Authentication URL for the
Salesforce service. For
example, sfdc_auth_url: https
://login.salesforce.com/servic
es/oauth2/token

SFDC username

N/A

Username for logging in to
the Salesforce service. For
example, sfdc_username: use
r@example.net

©2025, Mirantis Inc.

Page 27

Mirantis Cloud Platform Deployment Guide

SFDC password

N/A

Password for logging in to the
Salesforce service. For
example,

sfdc_password: secret

SFDC consumer
key

N/A

Consumer Key in Salesforce
required for Open
Authorization (OAuth). For
example, sfdc_consumer_key
: example_consumer_key

SFDC consumer
secret

N/A

Consumer Secret from
Salesforce required for
OAuth. For example, sfdc_con
sumer_secret: example _cons
umer_secret

SFDC organization
ID

N/A

Salesforce Organization ID in
Salesforce required for
OAuth. For example, sfdc_org
anization_id: example_organi
zation_id.

SFDC environment
ID

sfdc_environment id: 0

The cloud ID in Salesforce

SFDC Sandbox
enabled

sfdc_sandbox_enabled: True

Sandbox environments are
isolated from production
Salesforce clouds. Enable
sandbox to use it for testing
and evaluation purposes.
Verify that you specify the
correct sandbox-url value in
the sfdc_auth_url parameter.
Otherwise, set the parameter
to False.

0SS CIS username

0ss_cis_username: ${_param:oss_opens
tack _username}

CIS username

0SS CIS password

0ss_cis_password: ${ param:oss_openst
ack _password}

CIS password

0SS CIS
OpenStack auth
URL

0ss_cis_os_auth_url: ${ param:oss_open
stack auth_url}

CIS OpenStack authentication
URL

0SS CIS
OpenStack
endpoint type

0ss_cis_endpoint_type: ${ param:oss o
penstack_endpoint type}

CIS OpenStack endpoint type

0SS CIS project

0ss_cis_project: ${ param:oss_openstac
k_project}

CIS OpenStack project

©2025, Mirantis Inc.

Page 28

Mirantis Cloud Platform Deployment Guide

0SS CIS domain ID

0ss_cis_domain_id: ${ param:oss_opens
tack_domain_id}

CIS OpenStack domain ID

0SS CIS certificate

0ss_cis_cacert: ${ param:oss_openstac
k _cert}

0SS CIS certificate

0SS CIS jobs 0ss_cis_jobs_repository: https://github.c | CIS jobs repository
repository om/Mirantis/rundeck-cis-jobs.git
0SS CIS jobs 0ss_cis_jobs_repository_branch: master | CIS jobs repository branch

repository branch

0SS Security Audit
username

0ss_security_audit_username: ${_ param
:0ss_openstack username}

Security audit service
username

0SS Security Audit
password

0ss_security_audit_password: ${ param
:0ss_openstack password}

Security Audit service
password

0SS Security Audit
auth URL

name: oss_security audit os_auth _url: $
{_param:oss_openstack _auth_url}

Security Audit service
authentication URL

0SS Security Audit
project

0ss_security_audit_project: ${ param:os
s_openstack project}

Security Audit project name

0SS Security Audit
user domain ID

0ss_security_audit_user_domain_id: ${_
param:oss_openstack_domain_id}

Security Audit user domain ID

0SS Security Audit
project domain ID

0ss_security_audit_project_ domain_id: $
{_param:oss_openstack domain_id}

Security Audit project domain
ID

0SS Security Audit

0ss_security_audit_os_credentials_path:

Path to credentials for

OpenStack ${ param:oss_openstack credentials p | OpenStack cloud for the
credentials path ath} Security Audit service
0SS Cleanup 0ss_cleanup_service os credentials_pat | Path to credentials for

service Openstack
credentials path

h: ${ param:oss_openstack credentials
_path}

OpenStack cloud for the
Cleanup service

0SS Cleanup 0ss_cleanup_username: ${ param:oss o | Cleanup service username
service username penstack username}

0SS Cleanup 0ss_cleanup_password: ${ param:oss o | Cleanup service password
service password penstack password}

0SS Cleanup 0ss_cleanup_service_os_auth_url: ${ pa | Cleanup service

service auth URL ram:oss_openstack _auth_url} authentication URL

0SS Cleanup oss_cleanup_project: ${ param:oss _ope | Cleanup service project name
service project nstack project}

0SS Cleanup 0ss_cleanup_project domain_id: ${ par | Cleanup service project
service project am:oss_openstack domain_id} domain ID

domain ID

OpenContrail service parameters

©2025, Mirantis Inc.

Page 29

Mirantis Cloud Platform Deployment Guide

Section

Default JSON output

Description

OpenContrail
analytics address

opencontrail_analytics_address: 10.0.1.
30

The virtual IP address of the
OpenContrail analytics
cluster

OpenContrail opencontrail_analytics_hostname: nal The hostname of the
analytics OpenContrail analytics
hostname cluster

OpenContrail opencontrail_analytics node01 address: | The virtual IP address of the

analytics nodeO1
address

10.0.1.31

first OpenContrail analytics
node on the control network

OpenContrail opencontrail_analytics node01_hostham | The hostname of the first
analytics nodeO1 e: nal0l OpenContrail analytics node
hostname on the control network
OpenContrail opencontrail_analytics node02 _address: | The virtual IP address of the

analytics node02
address

10.0.1.32

second OpenContrail
analytics node on the control
network

OpenContrail opencontrail_analytics node02_hostnam | The hostname of the second
analytics node02 e: nal02 OpenContrail analytics node
hostname on the control network

OpenContrail opencontrail_analytics node03 address: | The virtual IP address of the

analytics node03
address

10.0.1.33

third OpenContrail analytics
node on the control network

OpenContrail opencontrail_analytics node03 _hostnam | The hostname of the second
analytics node03 e: nal03 OpenContrail analytics node
hostname on the control network

OpenContrail opencontrail_control_address: 10.0.1.20 | The virtual IP address of the

control address

OpenContrail control cluster

OpenContrail
control hostname

opencontrail_control_hostname: ntw

The hostname of the
OpenContrail control cluster

OpenContrail opencontrail_control_node0l1 address: 1 | The virtual IP address of the
control nodeO1 0.0.1.21 first OpenContrail control
address node on the control network
OpenContrail opencontrail_control node01 hosthname: | The hostname of the first
control nodeO1 ntw01 OpenContrail control node on
hostname the control network
OpenContrail opencontrail_control_node02 address: 1 | The virtual IP address of the
control node02 0.0.1.22 second OpenContrail control
address node on the control network

©2025, Mirantis Inc.

Page 30

Mirantis Cloud Platform Deployment Guide

OpenContrail opencontrail_control_node02_hostname: | The hostname of the second
control node02 ntw02 OpenContrail control node on
hostname the control network
OpenContrail opencontrail_control_node03 address: 1 | The virtual IP address of the
control node03 0.0.1.23 third OpenContrail control
address node on the control network
OpenContrail opencontrail_control_node03_hostname: | The hostname of the third
control node03 ntw03 OpenContrail control node on
hostname the control network
OpenContrail opencontrail_router01_address: 10.0.1.1 | The IP address of the first

router01 address

00

OpenContrail gateway router
for BGP

OpenContrail opencontrail_router01_hostname: rtr01 | The hostname of the first
router01 OpenContrail gateway router
hostname for BGP

OpenContrail opencontrail_router02_address: 10.0.1.1 | The IP address of the second

router02 address

01

OpenContrail gateway router
for BGP

OpenContrail opencontrail_router02_hostnhame: rtr02 The hostname of the second
router02 OpenContrail gateway router
hostname for BGP
OpenStack product parameters
Section Default JSON output Description

Compute primary
first NIC

compute_primary first nic: ethl

The first NIC in the
OpenStack compute bond

Compute primary
second NIC

compute_primary_second_nic: eth2

The second NIC in the
OpenStack compute bond

Compute bond
mode

compute_bond_mode: active-backup

The bond mode for the
compute nodes

OpenStack openstack_compute_rackO01 hostname: | The compute hostname
compute rack01 cmp prefix

hostname

OpenStack openstack_compute_rack01 single subn | The Control plane network

compute rack01
single subnet

et: 10.0.0.1

prefix for compute nodes

OpenStack
compute rack01
tenant subnet

openstack_compute_rack01 tenant sub
net: 10.0.2

The data plane netwrok
prefix for compute nodes

©2025, Mirantis Inc.

Page 31

Mirantis Cloud Platform Deployment Guide

OpenStack control
address

openstack_control_address: 10.0.1.10

The virtual IP address of the
control cluster on the control
network

OpenStack control
hostname

openstack_control_hosthname: ctl

The hostname of the VIP
control cluster

OpenStack control
nodeOl address

openstack _control_ node01 address: 10.
0.1.11

The IP address of the first
control node on the control
network

OpenStack control
node0l hostname

openstack _control_node0l1 hostname: c
ti0l

The hostname of the first
control node

OpenStack control
node02 address

openstack _control_node02_address: 10.
0.1.12

The IP address of the second
control node on the control
network

OpenStack control
node02 hostname

openstack_control_node02_hostname: c
t102

The hostname of the second
control node

OpenStack control
node03 address

openstack _control_node03 address: 10.
0.1.13

The IP address of the third
control node on the control
network

OpenStack control
node03 hostname

openstack_control_node03_hostname: c
ti03

The hostname of the third
control node

OpenStack
database address

openstack database address: 10.0.1.50

The virtual IP address of the
database cluster on the
control network

OpenStack openstack _database hostname: dbs The hostname of the VIP
database database cluster
hostname

OpenStack openstack _database node0Ol address: 1 | The IP address of the first

database nodeO1
address

0.0.1.51

database node on the control
network

OpenStack openstack _database node0l hostname: | The hostname of the first
database node0O1 dbs01 database node

hostname

OpenStack openstack _database node02 address: 1 | The IP address of the second

database node02
address

0.0.1.52

database node on the control
network

OpenStack openstack _database node02_hostname: | The hostname of the second
database node02 dbs02 database node

hostname

OpenStack openstack database node03 address: 1 | The IP address of the third

database node03
address

0.0.1.53

database node on the control
network

©2025, Mirantis Inc.

Page 32

Mirantis Cloud Platform Deployment Guide

OpenStack openstack database node03 hostname: | The hostname of the third
database node03 dbs03 database node

hostname

OpenStack openstack_message _queue_address: 10 | The vitrual IP address of the

message gueue
address

.0.1.40

message gueue cluster on
the control network

OpenStack openstack_message _queue_hostname: The hostname of the VIP
message queue msg message queue cluster
hostname

OpenStack openstack_message _queue _node0Ol ad | The IP address of the first

message gueue
nodeO1 address

dress: 10.0.1.41

message queue node on the
control network

OpenStack
message gueue
node01 hostname

openstack_message _queue_nodeOl hos
thame: msg01

The hostname of the first
message gueue node

OpenStack
message gueue
node02 address

openstack_message _queue_node02_ad
dress: 10.0.1.42

The IP address of the second
message gqueue node on the
control network

OpenStack
message gueue
node02 hostname

openstack_message _queue_node02_hos
thame: msg02

The hostname of the second
message gueue node

OpenStack
message gueue
node03 address

openstack_message _queue _node03 ad
dress: 10.0.1.43

The IP address of the third
message wueue node on the
control network

OpenStack
message gueue
node03 hostname

openstack_message _queue_node03_hos
thame: msg03

The hostname of the third
message gueue node

OpenStack openstack_benchmark node0Ol address: | The IP address of a
benchmark 10.0.1.95 benchmark node on the
nodeO1l address control network
OpenStack openstack_benchmark node0Ol1 hostna The hostname of a
benchmark me: bmk01 becnhmark node

node01 hostname

Openstack octavia
enabled

False

Enable the Octavia Load
Balancing-as-a-Service for
OpenStack. Requires OVS
OpenStack to be enabled as a
networking engine in
Infrastructure related
parameters.

©2025, Mirantis Inc.

Page 33

Mirantis Cloud Platform Deployment Guide

OpenStack proxy
address

openstack proxy_address: 10.0.1.80

The virtual IP address of a
proxy cluster on the control
network

OpenStack proxy
hostname

openstack _proxy_hostname: prx

The hostname of the VIP
proxy cluster

OpenStack proxy
node01 address

openstack proxy nodeOl address: 10.0.

1.81

The IP address of the first
proxy node on the control
network

OpenStack proxy
node01 hostname

openstack _proxy nodeOl hostname: pr

x01

The hostname of the first
proxy node

OpenStack proxy
node02 address

openstack proxy node02_ address: 10.0.

1.82

The IP address of the second
proxy node on the control
network

OpenStack proxy
node02 hostname

openstack _proxy node02_hostname: pr

x02

The hostname of the second
proxy node

OpenStack version

openstack_version: pike

The version of OpenStack to
be deployed

Manila enabled False Enable the Manila OpenStack
Shared File Systems service
Manila share LVM Enable the LVM Manila share

backend

backend

Manila Ilvm volume
name

manila-volume

The Manila LVM volume name

Manila Ilvm devices

/dev/sdb,/dev/sdc

The comma-separated paths
to the Manila LVM devices

Ironic enabled false Enable OpenStack Ironic. For
the deployment details, see
Deploy Ironic.

Tenant Telemetry false Enable Tenant Telemetry

enabled

based on Ceilometer, Aodh,
Panko, and Gnocchi. Disabled
by default. If enabled, you
can select the Gnocchi
aggregation storage type for
metrics: ceph, file, or redis
storage drivers.

Tenant Telemetry does not
support integration with
StackLight LMA.

Gnocchi
aggregation
storage

gnocchi_aggregation_storage: file

Storage for aggregated
metrics

©2025, Mirantis Inc.

Page 34

Mirantis Cloud Platform Deployment Guide

Designate enabled | desighate_enabled: 'False’ Enables OpenStack DNSaa$S
based on Designate
Designate desighate_backend: powerdns The DNS backend for
backend Designate
OpenStack internal | openstack_internal _protocol: http The protocol on internal
protocol OpenStack endpoints
Kubernetes product parameters
Section Default JSON output Description

Calico enable nat

calico_enable_nat: 'True'

If selected, NAT will be
enabled for Calico

Calico netmask 16 The netmask of the Calico
network
Calico network 192.168.0.0 The network that is used for

the Kubernetes containers

etcd SSL

etcd ssl: "True'

If selected, the SSL for etcd
will be enabled

Kubernetes virtlet False Optional. Virtlet enables
enabled Kubernetes to run virtual
machines. For the
enablement details, see
Enable Virtlet. Virtlet with
OpenContrail is available as
technical preview. Use such
configuration for testing and
evaluation purposes only.
Kubernetes False If selected, ExternalDNS will
externaldns be deployed. For details, see:
enabled Deploy ExternalDNS for
Kubernetes.
Kubernetes False If selected, the metrics-server
metrics server add-on will be deployed to
enabled enable horizontal pod

autoscaling. For details, see:
Enable horizontal pod
autoscaling.

©2025, Mirantis Inc.

Page 35

Mirantis Cloud Platform Deployment Guide

Kubernetes rbd
monitors

10.0.1.66:6789,10.0.1.67:6789,10.0.1.6

8:6789

A comma-separated list of
the Ceph RADOS Block
Device (RBD) monitors in a
Ceph cluster that will be
connected to Kubernetes.
This parameter becomes
available if you select the
Kubernetes rbd enabled
option in the Infrastructure
parameters section.

Kubernetes rbd
pool

kubernetes

A pool in a Ceph cluster that
will be connected to
Kubernetes. This parameter
becomes available if you
select the Kubernetes rbd
enabled option in the
Infrastructure parameters
section.

Kubernetes rbd
user id

kubernetes

A Ceph RBD user ID of a Ceph
cluster that will be connected
to Kubernetes. This
parameter becomes available
if you select the Kubernetes
rbd enabled option in the
Infrastructure parameters
section.

Kubernetes rbd

kubernetes key

A Ceph RBD user key of a

user key Ceph cluster that will be
connected to Kubernetes.
This parameter becomes
available if you select the
Kubernetes rbd enabled
option in the Infrastructure
parameters section.

Kubernetes cmpO01l The hostname of the first

compute nodeO1 Kubernetes compute node

hostname

Kubernetes 10.0.0.101 The IP address of the first

compute nodeO1 Kubernetes compute node

deploy address

Kubernetes 10.0.1.101 The IP address of the first

compute nodeO1
single address

Kubernetes compute node on
the Control plane

©2025, Mirantis Inc.

Page 36

Mirantis Cloud Platform Deployment Guide

Kubernetes 10.0.2.101 The tenant IP address of the
compute nodeO1 first Kubernetes compute
tenant address node

Kubernetes cmp02 The hostname of the second
compute node02 Kubernetes compute node
hostname

Kubernetes 10.0.0.102 The IP address of the second
compute node02 Kubernetes compute node on
deploy address the deploy network
Kubernetes 10.0.1.102 The IP address of the second
compute node02 Kubernetes compute node on
single address the control plane
Kubernetes control | 10.0.1.10 The Keepalived VIP of the
address Kubernetes control nodes
Kubernetes control | 10.0.1.11 The IP address of the first
nodeO1 address Kubernetes controller node
Kubernetes control | 10.0.0.11 The IP address of the first
nodeO01l deploy Kubernetes control node on
address the deploy network
Kubernetes control | ctlO1 The hostname of the first
node01 hostname Kubernetes controller node
Kubernetes control | 10.0.2.11 The tenant IP address of the
nodeO1l tenant first Kubernetes controller
address node

Kubernetes control | 10.0.1.12 The IP address of the second
node02 address Kubernetes controller node
Kubernetes control | 10.0.0.12 The IP address of the second
node02 deploy Kubernetes control node on
address the deploy network
Kubernetes control | ctl02 The hostname of the second
node02 hostname Kubernetes controller node
Kubernetes control | 10.0.2.12 The tenant IP address of the
node02 tenant second Kubernetes controller
address node

Kubernetes control | 10.0.1.13 The IP address of the third
node03 address Kubernetes controller node
Kubernetes control | 10.0.2.13 The tenant IP address of the

node03 tenant
address

third Kubernetes controller
node

©2025, Mirantis Inc.

Page 37

Mirantis Cloud Platform Deployment Guide

Kubernetes control | 10.0.0.13 The IP address of the third
node03 deploy Kubernetes control node on
address the deploy network
Kubernetes control | ctl03 The hostname of the third

node03 hostname

Kubernetes controller node

OpenContrail
public ip range

10.151.0.0/16

The public floating IP pool for
OpenContrail

Opencontrail
private ip range

10.150.0.0/16

The range of private
OpenContrail IPs used for
pods

Kubernetes ens4 The Kubernetes interface
keepalived vip used for the Keepalived VIP
interface
StackLight LMA product parameters
Section Default JSON output Description

StackLight LMA log
address

stacklight_log_address: 10.167.4.60

The virtual IP address of the
StackLight LMA logging
cluster

StackLight LMA log
hostname

stacklight_log_hostname: log

The hostname of the
StackLight LMA logging
cluster

StackLight LMA log
nodeO1 address

stacklight log_node0O1 address: 10.167.
4.61

The IP address of the first
StackLight LMA logging node

StackLight LMA log
node01 hostname

stacklight _log_node01 hostname: log01

The hostname of the first
StackLight LMA logging node

StackLight LMA log
node02 address

stacklight _log_node02 address: 10.167.
4.62

The IP address of the second
StackLight LMA logging node

StackLight LMA log
node02 hostname

stacklight_log_node02_hostname: log02

The hostname of the second
StackLight LMA logging node

StackLight LMA log
node03 address

stacklight log_node03 address: 10.167.
4.63

The IP address of the third
StackLight LMA logging node

StackLight LMA log
node03 hostname

stacklight_log_node03_hostname: log03

The hostname of the third
StackLight LMA logging node

StackLight LMA
monitor address

stacklight_monitor_address: 10.167.4.7
0

The virtual IP address of the
StackLight LMA monitoring
cluster

StackLight LMA
monitor hostname

stacklight_monitor_hostname: mon

The hostname of the
StackLight LMA monitoring
cluster

©2025, Mirantis Inc.

Page 38

Mirantis Cloud Platform Deployment Guide

StackLight LMA
monitor node0O1
address

stacklight_monitor_node0O1 _address: 10.
167.4.71

The IP address of the first
StackLight LMA monitoring
node

StackLight LMA
monitor node0O1
hostname

stacklight_monitor node01_hostname:
mon01

The hostname of the first
StackLight LMA monitoring
node

StackLight LMA
monitor node02
address

stacklight_monitor_node02_address: 10.
167.4.72

The IP address of the second
StackLight LMA monitoring
node

StackLight LMA
monitor node02
hostname

stacklight_monitor node02_hostname:
mon02

The hostname of the second
StackLight LMA monitoring
node

StackLight LMA
monitor node03
address

stacklight_monitor_node03 address: 10.
167.4.73

The IP address of the third
StackLight LMA monitoring
node

StackLight LMA
monitor node03
hostname

stacklight_monitor_ node03_hostname:
mon03

The hostname of the third
StackLight LMA monitoring
node

StackLight LMA
telemetry address

stacklight_telemetry address: 10.167.4.
85

The virtual IP address of a
StackLight LMA telemetry
cluster

StackLight LMA
telemetry
hostname

stacklight_telemetry _hostname: mtr

The hostname of a StackLight
LMA telemetry cluster

StackLight LMA
telemetry nodeO1
address

stacklight_telemetry nodeO1 _address: 1
0.167.4.86

The IP address of the first
StackLight LMA telemetry
node

StackLight LMA
telemetry nodeO1
hostname

stacklight_telemetry node0Ol1_hosthame:

mtrOl

The hostname of the first
StackLight LMA telemetry
node

StackLight LMA
telemetry node02
address

stacklight_telemetry node02_address: 1
0.167.4.87

The IP address of the second
StackLight LMA telemetry
node

StackLight LMA
telemetry node02
hostname

stacklight_telemetry node02_hosthame:

mtr02

The hostname of the second
StackLight LMA telemetry
node

StackLight LMA
telemetry node03
address

stacklight_telemetry node03_address: 1
0.167.4.88

The IP address of the third
StackLight LMA telemetry
node

StackLight LMA
telemetry node03
hostname

stacklight_telemetry node03_hosthame:

mtr03

The hostname of the third
StackLight LMA telemetry
node

©2025, Mirantis Inc.

Page 39

Mirantis Cloud Platform Deployment Guide

Long-term storage
type

stacklight_long _term_storage_type: pro
metheus

The type of the long-term
storage

Warning

InfluxDB, including
InfluxDB Relay and
remote storage
adapter, is deprecated
in the Q418 MCP
release and will be
removed in the next
release.

0SS webhook login
ID

0ss_webhook_login_id: 13

The webhook login ID for
alerts notifications

0SS webhook app
ID

0ss_webhook_app_id: 24

The webhook application ID
for alerts notifications

Gainsight account | N/A The customer account ID in

ID Salesforce

Gainsight N/A Mirantis organization ID in

application Salesforce

organization ID

Gainsight access N/A The access key for the

key Salesforce Gainsight service

Gainsight CSV N/A The URL to Gainsight API

upload URL

Gainsight N/A The customer environment ID

environment ID in Salesforce

Gainsight job ID N/A The job ID for the Salesforce
Gainsight service

Gainsight login N/A The login for the Salesforce

Gainsight service

Ceph product parameters

Default JSON output

Description

Ceph RGW address

ceph_rgw_address: 172.16.47.75

The IP address of the Ceph
RGW storage cluster

Ceph RGW
hostname

ceph_rgw_hostname: rgw

The hostname of the Ceph
RGW storage cluster

©2025, Mirantis Inc.

Page 40

Mirantis Cloud Platform Deployment Guide

Ceph MON node01
address

ceph_mon_node0Ol address: 172.16.47.
66

The IP address of the first
Ceph MON storage node

Ceph MON node01
hostname

ceph_mon_node0l1 hostname: cmn01l

The hostname of the first
Ceph MON storage node

Ceph MON node02
address

ceph_mon_node02 address: 172.16.47.
67

The IP address of the second
Ceph MON storage node

Ceph MON node02
hostname

ceph_mon_node02_hosthname: cmn02

The hostname of the second
Ceph MON storage node

Ceph MON node03
address

ceph_mon_node03 address: 172.16.47.
68

The IP address of the third
Ceph MON storage node

Ceph MON node03
hostname

ceph_mon_node03_hostname: cmn03

The hostname of the third
Ceph MON storage node

Ceph RGW node01
address

ceph_rgw_nodeOl address: 172.16.47.7
6

The IP address of the first
Ceph RGW node

Ceph RGW node01
hostname

ceph_rgw_node0l hostname: rgw01

The hostname of the first
Ceph RGW storage node

Ceph RGW node02
address

ceph_rgw_node02_address: 172.16.47.7
7

The IP address of the second
Ceph RGW storage node

Ceph RGW node02
hostname

ceph_rgw_node02_hostname: rgw02

The hostname of the second
Ceph RGW storage node

Ceph RGW node03
address

ceph_rgw_node03 address: 172.16.47.7
8

The IP address of the third
Ceph RGW storage node

Ceph RGW node03
hostname

ceph_rgw_node03_hostname: rgw03

The hostname of the third
Ceph RGW storage node

Ceph OSD node
count

ceph_osd node _count: 3

The number of OSD hosts

OSD padding with
zeros

osd_padding_with_zeros: True'

Enables padding with zeros
when generating Ceph OSD
host names. For example,
name the node as 0sd001 if
enabled, otherwise, osd1

Ceph OSD count

ceph_osd count: 10

The number of OSDs

Ceph OSD rack01
hostname

ceph_osd rackO1l hostname: osd

The OSD rack01 hostname

Ceph OSD single
address ranges

ceph_osd single_address_ranges

The control plane network
ranges for Ceph OSDs. A
comma-separated list of IP
ranges, for example, 172.16.
10.101-172.16.10.200,172.16
.20.101-172.16.20.200

©2025, Mirantis Inc.

Page 41

Mirantis Cloud Platform Deployment Guide

Ceph OSD
backend address
ranges

ceph_osd backend address ranges

The cluster network ranges
for Ceph OSDs, used to
replicate the OSDs data. A
comma-separated list of IP
ranges, for example, 172.16.
10.101-172.16.10.200,172.16
.20.101-172.16.20.200

Ceph OSD deploy
address ranges

ceph_osd deploy_address ranges

The deploy network ranges
for Ceph OSDs. A
comma-separated list of IP
ranges, for example, 172.16.
10.101-172.16.10.200,172.16
.20.101-172.16.20.200

Ceph OSD rack01
single subnet

ceph_osd rackO1 single subnet: 172.16
47

The control plane network
prefix for Ceph OSDs

Ceph OSD rack01
backend subnet

ceph_osd rackO1l backend subnet: 172.
16.48

The deploy network prefix for
Ceph OSDs

Ceph public
network

ceph_public_network: 172.16.47.0/24

The IP address of Ceph public
network with the network
mask

Ceph cluster
network

ceph_cluster_network: 172.16.48.70/24

The IP address of Ceph
cluster network with the
network mask

Ceph OSD block
DB size

ceph_osd block db size: 20

The Ceph OSD block DB size
in GB

Ceph OSD primary
first NIC

ceph_osd primary first nic: ethl

The first NIC of Ceph OSD
bond used for Ceph
communication

Ceph OSD primary
second NIC

ceph_osd primary _second_nic: eth2

The second NIC of Ceph OSD
bond used for Ceph
communication

Ceph OSD bond
mode

ceph_osd bond_mode: active-backup

The bonding mode for Ceph
OSD communication

Ceph OSD data
disks

ceph_osd_data_disks: /dev/vdd,/dev/vde

The list of OSD data disks

Ceph OSD journal
or block DB disks

ceph_osd journal_or_block db disks: /de
v/vdb,/dev/vdc

The list of journal or block
disks

©2025, Mirantis Inc.

Page 42

Mirantis Cloud Platform Deployment Guide

Publish the deployment model to a project repository

If you selected the option to receive the generated deployment model to your email address and
customized it as required, you need to apply the model to the project repository.

To publish the metadata model, push the changes to the project Git repository:

git add *
git commit -m "Initial commit"

git pull -r
git push --set-upstream origin master

Seealso
Deployment automation

©2025, Mirantis Inc. Page 43

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/infra-nodes-plan/deploy-automation.html

Mirantis Cloud Platform Deployment Guide

Deploy MCP DriveTrain

To reduce the deployment time and eliminate possible human errors, Mirantis recommends that
you use the semi-automated approach to the MCP DriveTrain deployment as described in this
section.

Caution!

The execution of the CLI commands used in the MCP Deployment Guide requires root
privileges. Therefore, unless explicitly stated otherwise, run the commands as a root user
or use sudo.

The deployment of MCP DriveTrain bases on the bootstrap automation of the Salt Master node.
On a Reclass model creation, you receive the configuration drives by the email that you
specified during the deployment model generation.

Depending on the deployment type, you receive the following configuration drives:

* For an online and offline deployment, the configuration drive for the cfg01 VM that is used in
cloud-init to set up a virtual machine with Salt Master, MAAS provisioner, Jenkins server, and
local Git server installed on it.

* For an offline deployment, the configuration drive for the APT VM that is used in cloud-init to
set up a virtual machine with all required repositories mirrors.

The high-level workflow of the MCP DriveTrain deployment

Description

1 Manually deploy and configure the Foundation node as described in Prerequisites for
MCP DriveTrain deployment.

2 Create the deployment model using the Model Designer web Ul as described in
Create a deployment metadata model.

3 Obtain the pre-built ISO configuration drive(s) with the Reclass deployment metadata
model to you email. If required, customize and regenerate the configuration drives as
described in Generate configuration drives manually.

4 Bootstrap the APT node. Optional, for an offline deployment only. For details, see:
Deploy the APT node.

5 Bootstrap the Salt Master node that contains MAAS provisioner, Jenkins server, and
local Git server. For details, see: Deploy the Salt Master node.

6 Deploy the remaining bare metal servers using the MAAS provisioner. For details,
see: Provision physical nodes using MAAS and Deploy physical nodes.

7 Deploy MCP CI/CD using Jenkins as described in Deploy CI/CD.

©2025, Mirantis Inc. Page 44

Mirantis Cloud Platform Deployment Guide

Prerequisites for MCP DriveTrain deployment

Before you proceed with the actual deployment, verify that you have performed the following
steps:

1. Deploy the Foundation physical node using one of the initial versions of Ubuntu Xenial, for
example, 16.04.1.

Use any standalone hardware node where you can run a KVM-based day01 virtual machine
with an access to the deploy/control network. The Foundation node will host the Salt Master
node that also includes the MAAS provisioner by default. For the offline case deployment,
the Foundation node will also host the mirror VM.

2. Depending on your case, proceed with one of the following options:
* If you do not have a deployment metadata model:

1. Create a model using the Model Designer Ul as described in Create a deployment
metadata model.

Note

For an offline deployment, select the Offline deployment and Local
repositories options under the Repositories section on the Infrastructure
parameters tab.

2. Customize the obtained configuration drives as described in Generate
configuration drives manually. For example, enable custom user access.

* If you use an already existing model that does not have configuration drives, or you
want to generate updated configuration drives, proceed with Generate configuration
drives manually.

3. Configure the following bridges on the Foundation node: br-mgm for the management
network and br-ctl for the control network.

1. Log in to the Foundation node through IPMI.

Note

If the IPMI network is not reachable from the management or control network,
add the br-ipmi bridge for the IPMI network or any other network that is routed to
the IPMI network.

2. Create PXE bridges to provision network on the foundation node:

©2025, Mirantis Inc. Page 45

http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-server-amd64.iso

Mirantis Cloud Platform Deployment Guide

brctl addbr br-mgm
brctl addbr br-ctl

3. Install the br-ctl utility:

apt install bridge-utils

4. Add the bridges definition for br-mgm and br-ctl to /etc/network/interfaces. Use
definitions from your deployment metadata model.

Example:

auto br-mgm

iface br-mgm inet static
address 172.17.17.200
netmask 255.255.255.192
bridge_ports bond0

5. Restart networking from the IPMI console to bring the bonds up.

6. Verify that the foundation node bridges are up by checking the output of the ip a show
command:

ip a show br-ctl

Example of system response:

8: br-ctl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default glen 1000
link/ether 00:1b:21:93:c7:c8 brd ff:ff:ff:ff:ff:ff
inet 172.17.45.241/24 brd 172.17.45.255 scope global br-ctl
valid_Ift forever preferred_Ift forever
inet6 fe80::21b:21ff:fe93:c7c8/64 scope link
valid_Ift forever preferred_Ift forever

4. Depending on your case, proceed with one of the following options:

* If you perform an online deployment, proceed to Deploy the Salt Master node.

* If you perform the offline deployment or online deployment with local mirrors, proceed
to Deploy the APT node.

©2025, Mirantis Inc. Page 46

Mirantis Cloud Platform Deployment Guide

Deploy the APT node

MCP enables you to deploy the whole MCP cluster without access to the Internet. On creating the
metadata model, along with the configuration drive for the cfg01 VM, you will obtain a
preconfigured QCOW?2 image that will contain packages, Docker images, operating system
images, Git repositories, and other software required specifically for the offline deployment.

This section describes how to deploy the apt0O1 VM using the prebuilt configuration drive.

Warning

Perform the procedure below only in case of an offline deployment or when using a local
mirror from the prebuilt image.

To deploy the APT node:

1. Verify that you completed steps described in Prerequisites for MCP DriveTrain deployment.

2.

Log in to the Foundation node.

Note

Root privileges are required for following steps. Execute the commands as a root user
or use sudo.

. Download the latest version of the prebuilt

http://images.mirantis.com/mcp-offline-image-<BUILD-ID>.qcow2 image for the apt node
from http://images.mirantis.com.

. In the /var/lib/libvirt/images/ directory, create an apt0l/ subdirectory where the offline

mirror image will be stored:

Note

You can create and use a different subdirectory in /var/lib/libvirt/images/. If that is the
case, verify that you specify the correct directory for the VM *DISK variables
described in next steps.

mkdir -p /var/lib/libvirt/images/apt01/

5. Save the image on the Foundation node as /var/lib/libvirt/images/apt01l/system.qcow?2.

©2025, Mirantis Inc. Page 47

http://images.mirantis.com

Mirantis Cloud Platform Deployment Guide

6. Copy the configuration ISO drive for the APT VM provided with the metadata model for the
offline image to, for example, /var/lib/libvirt/images/apt01/.

Caution!

By default, the prebuilt image does not have a possibility to log in to.

Note

If you are using an already existing model that does not have configuration drives, or
you want to generate updated configuration drives, for example, with an unlocked
root login for debugging purposes, proceed with Generate configuration drives
manually.

cp /path/to/prepared-drive/aptO1l-config.iso /var/lib/libvirt/images/apt01/apt01-config.iso

7. Deploy the APT node:
1. Download the shell script from GitHub:

export MCP_VERSION="master"
wget https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/${MCP_VERSION}/predefine-vm/define-vm.sh

2. Make the script executable, export the required variables:

chmod +x define-vm.sh

export VM_NAME="apt01.<CLUSTER_DOMAIN>"

export VM_SOURCE_DISK="/var/lib/libvirt/images/apt01/system.qcow2"
export VM_CONFIG_DISK="/var/lib/libvirt/images/apt01/apt01l-config.iso"

The CLUSTER_DOMAIN value is the cluster domain name used for the model. See Basic
deployment parameters for details.

Note

You may add other optional variables that have default values and change them
depending on your deployment configuration. These variables include:

« VM_MGM_BRIDGE_NAME="br-mgm"
« VM_CTL_BRIDGE_NAME="br-ct!"

©2025, Mirantis Inc. Page 48

Mirantis Cloud Platform Deployment Guide

« VM_MEM_KB="12589056"
« VM_CPUS="4"

The recommended VM_MEM KB for the Salt Master node is 12589056 (or more
depending on your cluster size) that is 12 GB of RAM. For large clusters, you
should also increase VM_CPUS.

The recommended VM_MEM KB for the local mirror node is 8388608 (or more)
that is 8 GB of RAM.

The br-mgm and br-ctl values are the names of the Linux bridges. See
Prerequisites for MCP DriveTrain deployment for details. Custom names can be
passed to a VM definition wusing the VM _MGM BRIDGE NAME and
VM _CTL BRIDGE_NAME variables accordingly.

3. Run the shell script:

.Jdefine-vm.sh

8. Start the apt01 VM:

virsh start apt01.<CLUSTER_DOMAIN>

9. For MCP versions prior to the 2019.2.14 maintenance update, perform the following
additional steps:

1. SSH to the apt01 node.
2. Verify the certificate:

openssl x509 -checkend 1 -in /var/lib/docker/swarm/certificates/swarm-node.crt

If the certificate has expired, restart Docker Swarm to regenerate it:

systemctl stop docker || true

rm -rf /var/lib/docker/swarm/*

systemctl restart docker

sleep 5

docker ps

docker swarm init --advertise-addr 127.0.0.1

sleep 5

cd /etc/docker/compose/docker/

docker stack deploy --compose-file docker-compose.yml docker
sleep 5

©2025, Mirantis Inc. Page 49

Mirantis Cloud Platform Deployment Guide

cd /etc/docker/compose/aptly/

docker stack deploy --compose-file docker-compose.yml aptly
sleep 5

docker ps

After completing the steps above, you obtain the aptOl node that contains only the pre-built
content. Now, you can proceed with Deploy the Salt Master node. Once you deploy the Salt
Master node, you will be able to customize the content of the local mirror, as described in
Customize the prebuilt mirror node.

Seealso

* MCP Release Notes: Release artifacts

* Customize the prebuilt mirror node

©2025, Mirantis Inc. Page 50

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/release-artifacts.html

Mirantis Cloud Platform Deployment Guide

Deploy the Salt Master node

The Salt Master node acts as a central control point for the clients that are called Salt minion
nodes. The minions, in their turn, connect back to the Salt Master node.

This section describes how to set up a virtual machine with Salt Master, MAAS provisioner,
Jenkins server, and local Git server. The procedure is applicable to both online and offline MCP

deployments.
To deploy the Salt Master node:

1. Log in to the Foundation node.

Note

Root privileges are required for following steps. Execute the commands as a root user
or use sudo.

2. In case of an offline deployment, replace the content of the /etc/apt/sources.list file with the
following lines:

deb [arch=amd64] http://<local_mirror_url>/ubuntu xenial-security main universe restricted

deb [arch=amd64] http://<local_mirror_url>/ubuntu xenial-updates main universe restricted
deb [arch=amd64] http://<local_mirror_url>/ubuntu xenial main universe restricted

3. Create a directory for the VM system disk:

Note

You can create and use a different subdirectory in /var/lib/libvirt/images/. If that is the
case, verify that you specify the correct directory for the VM *DISK variables

described in next steps.

mkdir -p /var/lib/libvirt/images/cfg01/
4. Download the day01 image for the cfg01 node:

wget http://images.mirantis.com/cfg01-day01-<BUILD ID>.qcow?2 -0\
/var/lib/libvirt/images/cfg01l/system.qcow?2

Substitute <BUILD ID> with the required MCP Build ID, for example, 2019.2.0.

5. Copy the configuration ISO drive for the cfg01 VM provided with the metadata model for the
offline image to, for example, /var/lib/libvirt/images/cfg01/cfg01-config.iso.

©2025, Mirantis Inc. Page 51

Mirantis Cloud Platform Deployment Guide

Note

If you are using an already existing model that does not have configuration drives, or
you want to generate updated configuration drives, for example, with an unlocked
root login for debugging purposes, proceed with Generate configuration drives
manually.

Caution!

Make sure to securely back up the configuration ISO drive image. This image contains
critical information required to re-install your cfg01 node in case of storage failure,
including master key for all encrypted secrets in the cluster metadata model.

Failure to back up the configuration ISO image may result in loss of ability to manage
MCP in certain hardware failure scenarios.

cp /path/to/prepared-drive/cfg01-config.iso /var/lib/libvirt/images/cfg01/cfg01-config.iso

6. Create the Salt Master VM domain definition using the example script:

1. Download the shell scripts from GitHub with the required MCP release version. For
example:

export MCP_VERSION="2019.2.0"
git clone https://github.com/Mirantis/mcp-common-scripts -b release/$ {MCP_VERSION}

2. Make the script executable and export the required variables:

cd mcp-common-scripts/predefine-vm/

export VM_NAME="cfg01.[CLUSTER_DOMAIN]"

export VM_SOURCE_DISK="/var/lib/libvirt/images/cfg01/system.qcow2"
export VM_CONFIG_DISK="/var/lib/libvirt/images/cfg01/cfg01-config.iso"

The CLUSTER_DOMAIN value is the cluster domain name used for the model. See Basic
deployment parameters for details.

Note

You may add other optional variables that have default values and change them
depending on your deployment configuration. These variables include:

©2025, Mirantis Inc. Page 52

Mirantis Cloud Platform Deployment Guide

« VM_MGM_BRIDGE_NAME="br-mgm"
« VM_CTL_BRIDGE_NAME="br-ctl"

« VM_MEM_KB="12589056"

« VM_CPUS="4"

The recommended VM_MEM KB for the Salt Master node is 12589056 (or more
depending on your cluster size) that is 12 GB of RAM. For large clusters, you
should also increase VM_CPUS.

The recommended VM_MEM KB for the local mirror node is 8388608 (or more)
that is 8 GB of RAM.

The br-mgm and br-ctl values are the names of the Linux bridges. See
Prerequisites for MCP DriveTrain deployment for details. Custom names can be
passed to a VM definition wusing the VM _MGM BRIDGE NAME and
VM _CTL BRIDGE_NAME variables accordingly.

3. Run the shell script:

.Jdefine-vm.sh

7. Start the Salt Master node VM:

virsh start cfg01.[CLUSTER_DOMAIN]

8. Log in to the Salt Master virsh console with the user name and password that you created in
step 4 of the Generate configuration drives manually procedure:

virsh console cfg01.[CLUSTER_DOMAIN]

9. If you use local repositories, verify that mk-pipelines are present in /home/repo/mk and
pipeline-library is present in /home/repo/mcp-ci after cloud-init finishes. If not, fix the
connection to local repositories and run the /var/lib/cloud/instance/scripts/part-001 script.

10 Verify that the following states are successfully applied during the execution of cloud-init:

salt-call state.sls linux.system,linux,openssh,salt
salt-call state.sls maas.cluster,maas.region,reclass

Otherwise, fix the pillar and re-apply the above states.

11 In case of using kvmO1 as the Foundation node, perform the following steps on it:

©2025, Mirantis Inc. Page 53

Mirantis Cloud Platform Deployment Guide

1. Depending on the deployment type, proceed with one of the options below:

*For an online deployment, add the following deb repository to
/etc/apt/sources.list.d/mcp_saltstack.list:

deb [arch=amd64] https://mirror.mirantis.com/<MCP_VERSION>/saltstack-2017.7/xenial/ xenial main

* For an offline deployment or local mirrors case, in
/etc/apt/sources.list.d/mcp_saltstack.list, add the following deb repository:

deb [arch=amd64] http://<local_mirror_url>/<MCP_VERSION>/saltstack-2017.7/xenial/ xenial main

2. Install the salt-minion package.
3. Modify /etc/salt/minion.d/minion.conf:

id: <kvmO1l_FQDN>
master: <Salt_Master_IP_or FQDN>

4, Restart the salt-minion service:
service salt-minion restart

5. Check the output of salt-key command on the Salt Master node to verify that the
minion ID of kvmO1 is present.

©2025, Mirantis Inc. Page 54

Mirantis Cloud Platform Deployment Guide

Verify the Salt infrastructure

Before you proceed with the deployment, validate the Reclass model and node pillars.

To verify the Salt infrastructure:

1. Log in to the Salt Master node.
2. Verify the Salt Master pillars:

reclass -n cfg0l.<cluster domain>

The cluster_domain value is the cluster domain name that you created while preparing your
deployment metadata model. See Basic deployment parameters for details.

3. Verify that the Salt version for the Salt minions is the same as for the Salt Master node, that
is currently 2017.7:

salt-call --version
salt "*' test.version

4. If required, enable management of the offline mirror VM (apt01l) and customize the VM
contents as described in Enable the management of the APT node through the Salt Master
node.

©2025, Mirantis Inc. Page 55

Mirantis Cloud Platform Deployment Guide

Enable the management of the APT node through the
Salt Master node

In compliance with the security best practices, MCP enables you to connect your offline mirror
APT VM to the Salt Master node and manage it as any infrastructure VM on your MCP
deployment.

Note

This section is only applicable for the offline deployments where all repositories are stored
on a specific VM deployed using the MCP apt01 offline image, which is included in the MCP
release artifacts.

For the deployments managed by the MCP 2018.8.0 Build ID or later, you should not manually
enable the Salt minion on the offline image VM as it is configured automatically on boot during
the APT VM provisioning.

Though, if your want to enable the management of the offline image VM through the Salt Master
node on an existing deployment managed by the MCP version below the 2018.8.0 Build ID, you
need to perform the procedure included in this section.

To enable the Salt minion on an existing offline mirror node:

1. Connect to the serial console of your offline image VM, which is included in the pre-built
offline APT QCOW image:

virsh console $(virsh list --all --name | grep ~apt01) --force

Log in with the user name and password that you created in step 4 of the Generate
configuration drives manually procedure.

Example of system response:

Connected to domain aptOl.example.local
Escape characteris ™]

2. Press Enter to drop into the root shell.

3. Configure the Salt minion and start it:

echo "" > Jetc/salt/minion

echo "master: <IP_address>" > Jetc/salt/minion.d/minion.conf

echo "id: <aptOl.example.local>" >> /etc/salt/minion.d/minion.conf
service salt-minion stop

rm -f /etc/salt/pki/minion/*

service salt-minion start

©2025, Mirantis Inc. Page 56

Mirantis Cloud Platform Deployment Guide

4. Quit the serial console by sending the Ctrl +] combination.
5. Log in to the Salt Master node.
6. Verify that you have the offline mirror VM Salt minion connected to your Salt Master node:

salt-key -L | grep apt

The system response should include your offline mirror VM domain name. For example:
aptOl.example.local
7. Verify that you can access the Salt minion from the Salt Master node:
salt apt01* test.ping
8. Verify the Salt states are mapped to the offline mirror VM:

salt apt01* state.show_top

Now, you can manage your offline mirror APT VM from the Salt Master node. At this point, the
Salt Master node does not manage the offline mirror content. If you need to adjust the content of
your offline mirror, refer to Customize the prebuilt mirror node.

©2025, Mirantis Inc. Page 57

Mirantis Cloud Platform Deployment Guide

Configure MAAS for bare metal provisioning

Before you proceed with provisioning of the remaining bare metal nodes, configure MAAS as
described below.

To configure MAAS for bare metal provisioning:

1. Log in to the MAAS web Ul through http://<infra_config_deploy address>:5240/MAAS with
the following credentials:

e Username: mirantis

¢ Password: rO0Otme
2. Go to the Subnets tab.

3. Select the fabric that is under the deploy network.

4. In the VLANs on this fabric area, click the VLAN under the VLAN column where the deploy
network subnet is.

5. In the Take action drop-down menu, select Provide DHCP.

6. Adjust the IP range as required.

Note

The number of IP addresses should not be less than the number of the planned VCP
nodes.

7. Click Provide DHCP to submit.

8. If you use local package mirrors:

Note

The following steps are required only to specify the local Ubuntu package repositories
that are secured by a custom GPG key and used mainly for the offline mirror images
prior the MCP version 2017.12.

1. Go to Settings > Package repositories.
2. Click Actions > Edit on the Ubuntu archive repository.

3. Specify the GPG key of the repository in the Key field. The key can be obtained from the
aptly_gpg_public_key parameter in the cluster level Reclass model.

4. Click Save.

©2025, Mirantis Inc. Page 58

Mirantis Cloud Platform Deployment Guide

Provision physical nodes using MAAS

Physical nodes host the Virtualized Control Plane (VCP) of your Mirantis Cloud Platform
deployment.

This section describes how to provision the physical nodes using the MAAS service that you have
deployed on the Foundation node while deploying the Salt Master node.

The servers that you must deploy include at least:
* For OpenStack:

e kvmO02 and kvmO3 infrastructure nodes

¢ cmp0 compute node
e For Kubernetes:

e kvmO02 and kvmO3 infrastructure nodes
e ctlO1, ctl02, ctl03 controller nodes

* cmp01 and cmp02 compute nodes
You can provision physical nodes automatically or manually:

* An automated provisioning requires you to define IPMI and MAC addresses in your Reclass
model. After you enforce all servers, the Salt Master node commissions and provisions them

automatically.

* A manual provisioning enables commissioning nodes through the MAAS web Ul.

Before you proceed with the physical nodes provisioning, you may want to customize the
commissioning script, for example, to set custom NIC names. For details, see: Add custom

commissioning scripts.

Warning

Before you proceed with the physical nodes provisioning, verify that BIOS settings enable
PXE booting from NICs on each physical server.

©2025, Mirantis Inc. Page 59

Mirantis Cloud Platform Deployment Guide

Automatically commission and provision the physical nodes

This section describes how to define physical nodes in a Reclass model to automatically
commission and then provision the nodes through Salt.

©2025, Mirantis Inc. Page 60

Mirantis Cloud Platform Deployment Guide

Automatically commission the physical nodes

You must define all IPMI credentials in your Reclass model to access physical servers for
automated commissioning. Once you define the nodes, Salt enforces them into MAAS and starts
commissioning.

To automatically commission physical nodes:

1. Define all physical nodes under classes/cluster/<cluster>/infra/maas.yml using the following
structure.

For example, to define the kvm02 node:

maas:
region:
machines:
kvmO02:

interface:
mac: 00:25:90:eb:92:4a

power_parameters:
power_address: kvm02.ipmi.net
power_password: password
power_type: ipmi
power_user: ipmi_user

Note

To get MAC addresses from IPMI, you can use the ipmi tool. Usage example for
Supermicro:

ipmitool -U ipmi_user-P passowrd -H kvmO02.ipmi.net raw 0x30 0x21 1| tail -c 18

2. (Optional) Define the IP address on the first (PXE) interface. By default, it is assigned
automatically and can be used as is.

For example, to define the kvm02 node:

maas:
region:
machines:
kvmO02:
interface:

mac: 00:25:90:eb:92:4a
mode: "static"
ip: "2.2.3.15"

©2025, Mirantis Inc. Page 61

Mirantis Cloud Platform Deployment Guide

subnet: "subnetl"
gateway: "2.2.3.2"

3. (Optional) Define a custom disk layout or partitioning per server in MAAS. For more
information and examples on how to define it in the model, see: Add a custom disk layout
per node in the MCP model.

4. (Optional) Modify the commissioning process as required. For more information and
examples, see: Add custom commissioning scripts.

5. Once you have defined all physical servers in your Reclass model, enforce the nodes:

Caution!

For an offline deployment, remove the deb-src repositories from commissioning
before enforcing the nodes, since these repositories are not present on the reduced
offline apt image node. To remove these repositories, you can enforce MAAS to
rebuild sources.list. For example:

export PROFILE="mirantis"

export API_KEY=$(cat /var/lib/maas/.maas_credentials)

maas login ${PROFILE} http://localhost:5240/MAAS/api/2.0/ ${API_KEY}

REPO_ID=%(maas $PROFILE package-repositories read | jq '.[]| select(.name=="main_archive") | .id ')
maas $PROFILE package-repository update ${REPO_ID} disabled_components=multiverse

maas $PROFILE package-repository update ${REPO_ID} "disabled_pockets=backports"

The default PROFILE variable is mirantis. You can find your deployment-specific value
for this parameter in parameters:maas:region:admin:username of your Reclass
model.

For details on building a custom list of repositories, see: MAAS GitHub project.

salt-call maas.process_machines

All nodes are automatically commissioned.

6. Verify the status of servers either through the MAAS web Ul or using the salt call command:

salt-call maas.machines_status

The successfully commissioned servers appear in the ready status.

7. Enforce the interfaces configuration defined in the model for servers:

salt-call state.sls maas.machines.assign_ip

©2025, Mirantis Inc. Page 62

https://github.com/maas/maas/blob/2.3/src/maasserver/compose_preseed.py#L71

Mirantis Cloud Platform Deployment Guide

8. To protect any static IP assignment defined, for example, in the model, configure a reserved
IP range in MAAS on the management subnet.

9. (Optional) Enforce the disk custom configuration defined in the model for servers:

salt-call state.sls maas.machines.storage

10 Verify that all servers have correct NIC names and configurations.

11 Proceed to Provision the automatically commissioned physical nodes.

©2025, Mirantis Inc. Page 63

Mirantis Cloud Platform Deployment Guide

Provision the automatically commissioned physical nodes
Once you successfully commission your physical nodes, you can start the provisioning.

To provision the automatically commissioned physical nodes through MAAS:

1. Log in to the Salt Master node.
2. Run the following command:

salt-call maas.deploy_machines

3. Check the status of the nodes:

salt-call maas.machines_status
local:
machines:
- hostname:kvmO02,system_id:anc6a4,status:Deploying
summary:
Deploying:
1

4. When all servers have been provisioned, perform the verification of the servers’™ automatic
registration by running the salt-key command on the Salt Master node. All nodes should be
registered. For example:

salt-key

Accepted Keys:
cfg01.bud.mirantis.net
cmpO001.bud.mirantis.net
cmp002.bud.mirantis.net
kvm02.bud.mirantis.net
kvmO03.bud.mirantis.net

Now, proceed to Deploy physical nodes.

©2025, Mirantis Inc. Page 64

Mirantis Cloud Platform Deployment Guide

Manually commission and provision the physical nodes

This section describes how to discover, commission, and provision the physical nodes using the
MAAS web UI.

©2025, Mirantis Inc. Page 65

Mirantis Cloud Platform Deployment Guide

Manually discover and commission the physical nodes
You can discover and commission your physical nodes manually using the MAAS web UI.

To discover and commission physical nodes manually:

. Power on a physical node.
. In the MAAS UlI, verify that the server has been discovered.

. On the Nodes tab, rename the discovered host accordingly. Click Save after each renaming.

H W N B

. In the Settings tab, configure the Commissioning release and the Default Minimum Kernel
Version to Ubuntu 16.04 TLS ‘Xenial Xerus’ and Xenial (hwe-16.04), respectively.

Note

The above step ensures that the NIC naming convention uses the predictable
schemas, for example, enpl130s0f0 rather than ethO.

5. In the Deploy area, configure the Default operating system used for deployment and Default
OS release used for deployment to Ubuntu and Ubuntu 16.04 LTS ‘Xenial Xerus’,
respectively.

6. Leave the remaining parameters as defaults.

7. (Optional) Modify the commissioning process as required. For more information and
examples, see: Add custom commissioning scripts.

8. Commission the node:
. From the Take Action drop-down list, select Commission.
. Define a storage schema for each node.
. On the Nodes tab, click the required node link from the list.

. Scroll down to the Available disks and partitions section.

. Click the radio button to make one of the disks the boot target.
. Click Create RAID to create an MD raidl volume.
. In RAID type, select RAID 1.

1
2
3
4
5. Select two SSDs using check marks in the left column.
6
7
8
9. In File system, select ext4.

10 Set / as Mount point.

11 Click Create RAID.

The Used disks and partitions section should now look as follows:

©2025, Mirantis Inc. Page 66

Mirantis Cloud Platform Deployment Guide

9. Repeat the above steps for each physical node.

10 Proceed to Manually provision the physical nodes.

©2025, Mirantis Inc. Page 67

Mirantis Cloud Platform Deployment Guide

Manually provision the physical nodes

Start the manual provisioning of the physical nodes with the control plane kvm02 and kvmO03

physical nodes, and then proceed with the compute cmp01 node deployment.

To manually provision the physical nodes through MAAS:
1. Verify that the boot order in the physical nodes’ BIOS is set in the following order:

1. PXE

2. The physical disk that was chosen as the boot target in the Maas Ul.
. Log in to the MAAS web UI.

. Click on a node.
. Click the Take Action drop-down menu and select Deploy.

u A~ W N

Xenial(hwe-16.04) kernel is selected.

(e}}

. Click Go to deploy the node.

7. Repeat the above steps for each node.
Now, proceed to Deploy physical nodes.

. In the Choose your image area, verify that Ubuntu 16.04 LTS 'Xenial Xerus' with the

Seealso

* Configure PXE booting over UEFI

©2025, Mirantis Inc.

Page 68

Mirantis Cloud Platform Deployment Guide

Deploy physical nodes

After you provision physical nodes as described in Provision physical nodes using MAAS, follow
the instruction below to deploy physical nodes intended for an OpenStack-based MCP cluster. If
you plan to deploy a Kubernetes-based MCP cluster, proceed with steps 1-2 of the Kubernetes
Prerequisites procedure.

Caution!

To avoid the lack of memory for the network driver and ensure its proper operation,
specify the minimum reserved kernel memory in your Reclass model on the cluster level
for a particular hardware node. For example, use
[cluster/<cluster_name>/openstack/compute/init.yml| for the OpenStack compute nodes
and /cluster/<cluster_name>/infra/kvm.yml for the KVM nodes.

linux:
system:
kernel:
sysctl:
vm.min_free_kbytes: <min_reserved_memory>

Set the vm.min_free_kbytes value to 4194304 for a node with more than 96 GB of RAM.
Otherwise, set not more than 5% of the total RAM on the node.

Note

To change the default kernel version, perform the steps described in Manage kernel
version.

To deploy physical servers:

1. Log in to the Salt Master node.

2. Verify that the cfg01 key has been added to Salt and your host FQDN is shown properly in
the Accepted Keys field in the output of the following command:

salt-key

3. Verify that all pillars and Salt data are refreshed:

salt "*" saltutil.refresh_pillar
salt "*" saltutil.sync_all

©2025, Mirantis Inc. Page 69

Mirantis Cloud Platform Deployment Guide

4. Verify that the Reclass model is configured correctly. The following command output should
show top states for all nodes:

python -m reclass.cli --inventory

5. To verify that the rebooting of the nodes, which will be performed further, is successful,
create the trigger file:

salt -C 'l@salt:control or I@nova:compute or I@neutron:gateway or I@ceph:osd' \
cmd.run "touch /run/is_rebooted"

6. To prepare physical nodes for VCP deployment, apply the basic Salt states for setting up
network interfaces and SSH access. Nodes will be rebooted.

Warning

If you use kvmO1 as a Foundation node, the execution of the commands below will
also reboot the Salt Master node.

Caution!
All hardware nodes must be rebooted after executing the commands below. If the

nodes do not reboot for a long time, execute the below commands again or reboot
the nodes manually.

Verify that you have a possibility to log in to nodes through IPMI in case of
emergency.
1. For KVM nodes:

salt --async -C 'l@salt:control' cmd.run 'salt-call state.sls \
linux.system.repo,linux.system.user,openssh,linux.network;reboot'

2. For compute nodes:

salt --async -C 'l@nova:compute' pkg.install bridge-utils,vlan

salt --async -C 'l@nova:compute' cmd.run 'salt-call state.sls \
linux.system.repo,linux.system.user,openssh,linux.network;reboot'

©2025, Mirantis Inc. Page 70

Mirantis Cloud Platform Deployment Guide

3. For gateway nodes, execute the following command only for the deployments with OVS
setup with physical gateway nodes:

salt --async -C 'l@neutron:gateway' cmd.run 'salt-call state.sls \
linux.system.repo,linux.system.user,openssh,linux.network;reboot'

The targeted KVM, compute, and gateway nodes will stop responding after a couple of
minutes. Wait until all of the nodes reboot.

7. Verify that the targeted nodes are up and running:

salt -C 'l@salt:control or I@nova:compute or I@neutron:gateway or I@ceph:osd' \
test.ping

8. Check the previously created trigger file to verify that the targeted nodes are actually
rebooted:

salt -C 'l@salt:control or I@nova:compute or I@neutron:gateway' \
cmd.run 'if [-f "/run/is_rebooted"];then echo "Has not been rebooted!";else echo "Rebooted";fi'

All nodes should be in the Rebooted state.

9. Verify that the hardware nodes have the required network configuration. For example,
verify the output of the ip a command:

salt -C 'l@salt:control or I@nova:compute or I@neutron:gateway or I@ceph:osd' \
cmd.run "ip a"

©2025, Mirantis Inc. Page 71

Mirantis Cloud Platform Deployment Guide

Deploy VCP

The virtualized control plane (VCP) is hosted by KVM nodes deployed by MAAS. Depending on
the cluster type, the VCP runs Kubernetes or OpenStack services, database (MySQL), message
queue (RabbitMQ), Contrail, and support services, such as monitoring, log aggregation, and a
time-series metric database. VMs can be added to or removed from the VCP allowing for easy
scaling of your MCP cluster.

After the KVM nodes are deployed, Salt is used to configure Linux networking, appropriate
repositories, host name, and so on by running the linux Salt state against these nodes. The
libvirt packages configuration, in its turn, is managed by running the libvirt Salt state.

©2025, Mirantis Inc. Page 72

Mirantis Cloud Platform Deployment Guide

Prepare KVM nodes to run the VCP nodes

To prepare physical nodes to run the VCP nodes:

1. On the Salt Master node, prepare the node operating system by running the Salt linux state:

salt-call state.sls linux - info

Warning

Some formulas may not correctly deploy on the first run of this command. This could
be due to a race condition in running the deployment of nodes and services in parallel
while some services are dependent on others. Repeat the command execution. If an
immediate subsequent run of the command fails again, reboot the affected physical
node and re-run the command.

2. Prepare physical nodes operating system to run the controller node:

1. Verify the salt-common and salt-minion versions

2. If necessary, Install the correct versions of salt-common and salt-minion.
3. Proceed to Create and provision the control plane VMs.

©2025, Mirantis Inc. Page 73

Mirantis Cloud Platform Deployment Guide

Verify the salt-common and salt-minion versions

To verify the version deployed with the state:

1. Log in to the physical node console.

2. To verify the salt-common version, run:
apt-cache policy salt-common
3. To verify the salt-minion version, run:

apt-cache policy salt-minion

The output for the commands above must show the 2017.7 version. If you have different
versions installed, proceed with Install the correct versions of salt-common and salt-minion.

©2025, Mirantis Inc. Page 74

Mirantis Cloud Platform Deployment Guide

Install the correct versions of salt-common and salt-minion
This section describes the workaround for salt.virt to properly inject minion.conf.

To manually install the required version of salt-common and salt-minion:

1. Log in to the physical node console

2. Change the version to 2017.7 in /etc/apt/sources.list.d/salt.list:

deb [arch=amd64] http://repo.saltstack.com/apt/ubuntu/16.04/amd64/2017.7/dists/ xenial main
3. Sync the packages index files:

apt-get update
4. Verify the versions:

apt-cache policy salt-common
apt-cache policy salt-minion

5. If the wrong versions are installed, remove them:

apt-get remove salt-minion
apt-get remove salt-common

6. Install the required versions of salt-common and salt-minion:

apt-get install salt-common=2017.7
apt-get install salt-minion=2017.7

7. Restart the salt-minion service to ensure connectivity with the Salt Master node:
service salt-minion stop && service salt-minion start

8. Verify that the required version is installed:

apt-cache policy salt-common
apt-cache policy salt-minion

9. Repeat the procedure on each physical node.

©2025, Mirantis Inc. Page 75

Mirantis Cloud Platform Deployment Guide

Partitioning of a VCP node

Starting from the Q4" 18 MCP release, the VCP images contain the prebuilt partitioning table. The

main VM disk, which is vda, has the following partitions:
* vdal - 1 MB partition required for GPT
* vda2 - 1 GB boot partition
* vda3 - Partition with LVM

The mountpoints selection is based on the recommendations from Center for Internet Security

(CIS) and inlcude the following:

* root

* home

* /var/log

* /var/log/audit
e /tmp

* /var/tmp
Example of a partition table for a proxy node:

root@prx01:# Isblk /dev/vda

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 20G 0disk
—vda2 252:2 01002M O part /boot
—vda3 252:3 0 19G O part
vg0-home 253:1 0 100M O Ivm /home
vgO0-var_tmp 253:4 0 500M O Ivm /var/tmp
vgO-tmp 253:2 0 500M O Ilvm /tmp
vgO0-root 253:0 0 9.5G OlIlvm /
vgO0-var_log _audit 253:5 0 500M 0 lvm /var/log/audit
vg0-var_log 253:3 0 2.9G 0lvm /var/log

—vdal 252:1 0 1M O part

©2025, Mirantis Inc.

Page 76

Mirantis Cloud Platform Deployment Guide

Specifying the VCP network/disk metadata

Each VCP node has the size parameter associated with it. The size parameter is represented by
the salt:control:cluster:internal:node:<VCP_NAME>:size path in Reclass, where <VCP_NAME> is
the name of your VCP node. For example, for prx01:

root@cfg01:~# salt kvmO1* pillar.items salt:control:cluster:internal:node:prx01:size --out json
{
"kvmO1l.<CLUSTER NAME>.local": {
"salt:control:cluster:internal:node:prx01:size": "openstack.proxy"
}
}

The size parameter defines disk, network, RAM, and CPU metadata per a VCP node class. For
example:

root@cfg01l:~# salt kvmO1* pillar.items salt:control:size:openstack.control --out json
{
"kvmO01l.<CLUSTER_NAME>.local": {
"salt:control:size:openstack.control": {
"net_profile": "default",
“ram": 32768,
“cpu": 8,
"disk_profile": "small"
}
}
}

The disk profile parameter is the profile that describes the disk configuration for a VCP node.
You can extend a VCP image and connect it to a VM. For example:

root@cfg01l:~# salt kvmO1* pillar.items virt:disk --out json

{
"kvmO01l.<CLUSTER_NAME>.local": {
"virt:disk": {
"small": [
{
"system": {
"size": 8000
}
}
]
}
}
}

©2025, Mirantis Inc. Page 77

Mirantis Cloud Platform Deployment Guide

Passing the cloud-init data to a VCP node

By default, a VCP node is bootstrapped through cloud-init. You can set the cloud-init user_data
either on the cluster or node levels. The node level configuration overrides the cloud_init data

passed on the cluster level.
The user_data configuration example on the cluster level:

salt:
control:
enabled: true
virt_enabled: true
cluster:
mycluster:
domain: neco.virt.domain.com
engine: virt
Cluster global settings
seed: cloud-init
cloud_init:
user_data:
disable_ec2_metadata: true
resize_rootfs: True
timezone: UTC
ssh_deletekeys: True
ssh_genkeytypes: ['rsa’, 'dsa’, 'ecdsa'l
ssh_svcname: ssh
locale: en_US.UTF-8
disable_root: true
apt_preserve_sources_list: false

apt:
sources_list: ""
sources:
ubuntu.list:

source: ${linux:system:repo:ubuntu:source}
mcp_saltstack.list:
source: ${linux:system:repo:mcp_saltstack:source}

The user_data configuration example on the node level:

salt:
control:
cluster:
mycluster:
node:
ubuntul:
provider: node0Ol.domain.com
image: ubuntu.qcow
size: medium

©2025, Mirantis Inc.

Page 78

Mirantis Cloud Platform Deployment Guide

cloud_init:
network data:
networks:
- <<: *private-ipv4
ip_address: 192.168.0.161

Specifying the cloud-init data to grow an LVM-based VCP node

When a VM is spawned, the cloud-init growroot module extends the physical disk to consume all
free space. The stages of the partition growth for a VCP node with Logical Volume Management

(LVM) include:
1. The growth of a physical disk, which is performed by the growroot module.

To grow a particular physical drive and not the / mounpoint as it is pointed to LVM, you need
to pass the following cloud_init data to the cluster level:

_param:
salt_control_cluster_vcp_lvm_device: '/dev/vda3'
salt:
control:
cluster:
internal:
seed: cloud-init
cloud_init:
user_data:
growpart:
mode: auto
devices:
.y
- ${ _param:salt_control_cluster vcp lvm_device}
ignore_growroot_disabled: false

Note
The name of the disk can differ depending on the VCP disk driver. By default, vda as
virtio is used.

2. The extension of the LVM physical volume to consume all free disk space.

Configuration example:

_param:
salt_control_cluster_vcp_lvm_device: '/dev/vda3'

salt:

©2025, Mirantis Inc. Page 79

https://cloudinit.readthedocs.io/en/latest/topics/modules.html#growpart

Mirantis Cloud Platform Deployment Guide

control:
cluster:
internal:
seed: cloud-init
cloud_init:
user_data:
runcmd:
- 'if lvs vg0; then pvresize ${_param:salt_control_cluster_vcp Ivm_device}; fi'
- 'if lvs vg0; then /usr/bin/growlvm.py --image-layout-file /usr/share/growlvm/image-layout.yml; fi'

3. The application of the partitioning layout.

The partitioning layout is stored in salt:control:size:openstack.control:image_layout, which
is a dictionary with the following schema:

{"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Image partition layout",

"type": "object",

"patternProperties": {

ot {"$ref": "#/definitions/logical_volume_layout"}
I
"definitions": {

"logical_volume_layout": {

"type": "object",
"properties": {
"name": {
"description”: "Logical Volume Name",
"type": "string"
H
"size": {
"description™: (
"Size of Logical volume in units of logical extents. "
“The number might be volume size in units of "
"megabytes. A size suffix of M for megabytes, G for "
"gigabytes, T for terabytes, P for petabytes or E for "
"exabytes is optional. The number can also be "
"expressed as a percentage of the total space in the "
"Volume Group with the suffix %VG. Percentage of the "
"changeble values like free space is not supported."
),
H
"resizefs": {

"description™: (

"Resize underlying filesystem together with the "
“logical volume using fsadm(8)."

),
"type": "boolean"
H
"vg": {

"description”: ("Volume group name to resize logical "

©2025, Mirantis Inc. Page 80

Mirantis Cloud Platform Deployment Guide

"volume on."),
"type": "string"
}
}
"additionalProperties": False,
"required": ["size"]
}
}}

The default partitioning layout is
/srv/salt/reclass/classes/system/defaults/salt/init.yml file.

Configuration example:

parameters:
_param:
salt_control_size_image_layout_default:
root:
size: '30%VG'
home:
size: '1G'
var_log:
size: '11%VG'
var_log_audit:
size: '5G'
var_tmp:
size: '11%VG'
tmp:
size: '5G'

specified in the

salt_control_size_image_layout_ceph_mon: ${_param:salt_control _size image_layout default}
salt_control_size_image_layout_ceph_rgw: ${_param:salt_control_size_image_layout_default}

You can adjust the partitioning layout for a particular size through a soft type parameter.
For example, you can describe the partitioning layout for ceph.mon as follows:

parameters:
_param:
salt_control_size image_layout ceph_mon:
root:
size: '70%VG'
home:
size: '500M'
var_log:
size: '5%VG'
var_log_audit:
size: '1G'
var_tmp:
size: '1G'

©2025, Mirantis Inc.

Page 81

Mirantis Cloud Platform Deployment Guide

tmp:
size: '1G'

©2025, Mirantis Inc. Page 82

Mirantis Cloud Platform Deployment Guide

Create and provision the control plane VMs

The control plane VMs are created on each node by running the salt state. This state leverages
the salt virt module along with some customizations defined in a Mirantis formula called
salt-formula-salt. Similarly to how MAAS manages bare metal, the salt virt module creates VMs
based on profiles that are defined in the metadata and mounts the virtual disk to add the
appropriate parameters to the minion configuration file.

After the salt state successfully runs against a KVM node where metadata specifies the VMs
placement, these VMs will be started and automatically added to the Salt Master node.

To create control plane VMs:

1. Log in to the KVM nodes that do not host the Salt Master node. The correct physical node
names used in the installation described in this guide to perform the next step are kvm02
and kvmO03.

Warning

Otherwise, on running the command in the step below, you will delete the cfg Salt
Master.

2. Verify whether virtual machines are not yet present:

virsh list --name --all | grep -Ev '~ (mas|cfg|apt)' | xargs -n 1 virsh destroy
virsh list --name --all | grep -Ev '~ (mas|cfg|apt)’ | xargs -n 1 virsh undefine

3. Log in to the Salt Master node console.

4. Verify that the Salt Minion nodes are synchronized by running the following command on
the Salt Master node:

salt '"*' saltutil.sync_all
5. Perform the initial Salt configuration:
salt 'kvm*' state.sls salt.minion

6. Set up the network interfaces and the SSH access:

salt -C 'l@salt:control' cmd.run 'salt-call state.sls \
linux.system.user,openssh,linux.network;reboot'

©2025, Mirantis Inc. Page 83

Mirantis Cloud Platform Deployment Guide

Warning

This will also reboot the Salt Master node because it is running on top of kvmO01.

7. Log in back to the Salt Master node console.

8. Run the libvirt state:

salt 'kvm*' state.sls libvirt

9. For the

OpenStack-based

MCP

clusters,

add

system.salt.control.cluster.openstack gateway single to infra/kvm.yml to enable a gateway
VM for your OpenStack environment. Skip this step for the Kubernetes-based MCP clusters.

10 Run salt.control to create virtual machines. This command also inserts minion.conf files

. from KVM hosts:

salt 'kvm*' state.sls salt.control

11 Verify that all your Salt Minion nodes are registered on the Salt Master node. This may take

. a few minutes.

salt-key

Example of system response:

mon03.bud.mirantis.net
msg01.bud.mirantis.net
msg02.bud.mirantis.net
msg03.bud.mirantis.net
mtrO1l.bud.mirantis.net
mtr02.bud.mirantis.net
mtr03.bud.mirantis.net
nal0l.bud.mirantis.net
nal02.bud.mirantis.net
nal03.bud.mirantis.net
ntw01l.bud.mirantis.net
ntw02.bud.mirantis.net
ntw03.bud.mirantis.net
prx01.bud.mirantis.net
prx02.bud.mirantis.net

©2025, Mirantis Inc.

Page 84

Mirantis Cloud Platform Deployment Guide

Seealso

Manage kernel version

©2025, Mirantis Inc. Page 85

Mirantis Cloud Platform Deployment Guide

Deploy CI/CD

The automated deployment of the MCP components is performed through CI/CD that is a part of
MCP DriveTrain along with SaltStack and Reclass. CI/CD, in its turn, includes Jenkins, Gerrit, and
MCP Registry components. This section explains how to deploy a CI/CD infrastructure.

To deploy CI/CD automatically:

1. Deploy a customer-specific CI/CD using Jenkins as part of, for example, an OpenStack cloud
environment deployment:

1. Log in to the Jenkins web Ul available at salt_master_management_address:8081 with
the following credentials:

e Username: admin

* Password: rOOtme
2. Use the Deploy - OpenStack pipeline to deploy cicd cluster nodes as described in
Deploy an OpenStack environment. Start with Step 7 in case of the online deployment
and with Step 8 in case of the offline deployment.

2. Once the cloud environment is deployed, verify that the cicd cluster is up and running.

3. Disable the Jenkins service on the Salt Master node:

e For the MCP versions 2018.11.0 and below:

systemctl stop jenkins
systemctl disable jenkins

* For the MCP wversions 2019.2.0 and newer, add following pillars to
infra/config/jenkins.yml:

parameters:
docker:
client:
stack:
jenkins:
service:
master:
deploy:
replicas: O
slaveO1l.:
deploy:
replicas: O

4. Skip the jenkins.client state on the Salt Master node by adding the following pillars to
infra/config/jenkins.yml:

parameters:
jenkins:

©2025, Mirantis Inc. Page 86

Mirantis Cloud Platform Deployment Guide

client:
enabled: false

5. Refresh pillars on the Salt Master node:
salt-call saltutil.clear_cache && salt-call saltutil.refresh_pillar

6. For the MCP versions 2019.2.0 and newer, update the Jenkins service configuration in
Docker on the Salt Master node:

salt-call state.apply docker.client

Seealso

* Enable a watchdog

* Manage kernel version

©2025, Mirantis Inc. Page 87

Mirantis Cloud Platform Deployment Guide

Deploy an MCP cluster using DriveTrain

After you have installed the MCP CI/CD infrastructure as descibed in Deploy CI/CD, you can reach
the Jenkins web Ul through the Jenkins master IP address. This section contains procedures
explaining how to deploy OpenStack environments and Kubernetes clusters using CI/CD

pipelines.

Note
For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web Ul with your Launchpad credentials.

©2025, Mirantis Inc. Page 88

https://ci.mcp.mirantis.net/

Mirantis Cloud Platform Deployment Guide

Deploy an OpenStack environment

This section explains how to configure and launch the OpenStack environment deployment
pipeline. This job is run by Jenkins through the Salt API on the functioning Salt Master node and
deployed hardware servers to set up your MCP OpenStack environment.

Run this Jenkins pipeline after you configure the basic infrastructure as described in Deploy MCP
DriveTrain. Also, verify that you have successfully applied the linux and salt states to all physical
and virtual nodes for them not to be disconnected during network and Salt Minion setup.

Note
For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web Ul with your Launchpad credentials.

To automatically deploy an OpenStack environment:

1. Log in to the Salt Master node.

2.For the OpenContrail setup, add the version-specific parameters to the
<cluster_name>/opencontrail/init.yml file of your Reclass model. For example:

parameters:
_param:
opencontrail_version: 4.1
linux_repo_contrail_ component: oc41l

3. Set up network interfaces and the SSH access on all compute nodes:

salt -C 'l@nova:compute' cmd.run 'salt-call state.sls \
linux.system.user,openssh,linux.network;reboot'

4. If you run OVS, run the same command on physical gateway nodes as well:

salt -C 'l@neutron:gateway' cmd.run 'salt-call state.sls \
linux.system.user,openssh,linux.network;reboot'

5. Verify that all nodes are ready for deployment:

salt '*' state.sls linux,ntp,openssh,salt.minion

©2025, Mirantis Inc. Page 89

https://ci.mcp.mirantis.net/

Mirantis Cloud Platform Deployment Guide

Caution!

If any of these states fails, fix the issue provided in the output and re-apply the state
before you proceed to the next step. Otherwise, the Jenkins pipeline will fail.

6. In a web browser, open http://<ip address>:8081 to access the Jenkins web UlI.

Note

The IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of
the Reclass model under the cicd_control_address parameter variable.

7. Log in to the Jenkins web Ul as admin.

Note
To obtain the password for the admin user, run the
salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master
node.

8.In the global view, verify that the git-mirror-downstream-mk-pipelines and
git-mirror-downstream-pipeline-library pipelines have successfully mirrored all content.

9. Find the Deploy - OpenStack job in the global view.

10 Select the Build with Parameters option from the drop-down menu of the Deploy -
. OpenStack job.

11 Specify the following parameters:

Deploy - OpenStack environment parameters

Parameter Description and values

ASK _ON_ERROR If checked, Jenkins will ask either to stop a pipeline or continue
execution in case of Salt state fails on any task

©2025, Mirantis Inc. Page 90

Mirantis Cloud Platform Deployment Guide

STACK INSTALL Specifies the components you need to install. The available
values include:

* core
* kvm

* cicd

e openstack

e ovs or contrail depending on the network plugin.
e ceph

* stacklight

* 0SS

Note

For the details regarding StackLight LMA
(stacklight) with the DevOps Portal (o0ss)
deployment, see Deploy StackLight LMA with the
DevOps Portal.

BATCH_SIZE Added since | Tha patch size for Salt commands targeted for a large amount
2019.2.6'update of nodes. Disabled by default. Set to an absolute number of
nodes (integer) or percentage, for example, 20 or 20%. For
details, see Configure Salt Master threads and batching.

DIST UPGRADE NODES | Select to run apt-get dist-upgrade on all cluster nodes before
Added'since 2019.2:8 update | jop516yment. Disabled by default.

SALT_MASTER_CREDEN | Specifies credentials to Salt API stored in Jenkins, included by

TIALS default. See View credentials details used in Jenkins pipelines
for details.
SALT_MASTER_URL Specifies the reachable IP address of the Salt Master node and

port on which Salt API listens. For example,
http://172.18.170.28:6969
To find out on which port Salt API listens:

1. Log in to the Salt Master node.
2. Search for the port in the /etc/salt/master.d/_api.conf file.

3. Verify that the Salt Master node is listening on that port:

netstat -tunelp | grep <PORT>

STACK TYPE Specifies the environment type. Use physical for a bare metal
deployment

©2025, Mirantis Inc. Page 91

Mirantis Cloud Platform Deployment Guide

12 Click Build.

13 Once done, configure the Salt Master node password expiration as described in Modify Salt
. Master password expiration.

Seealso

* View the deployment details
* Enable a watchdog

* MCP 2019.2.3 Maintenance Update: Known issues

©2025, Mirantis Inc. Page 92

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-3/mu-3-known.html

Mirantis Cloud Platform Deployment Guide

Deploy a multi-site OpenStack environment

MCP DriveTrain enables you to deploy several OpenStack environments at the same time.

Note
For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web Ul with your Launchpad credentials.

To deploy a multi-site OpenStack environment, repeat the Deploy an OpenStack environment
procedure as many times as you need specifying different values for the SALT MASTER_URL
parameter.

Seealso

View the deployment details

©2025, Mirantis Inc. Page 93

https://ci.mcp.mirantis.net/

Mirantis Cloud Platform Deployment Guide

Deploy a Kubernetes cluster

Caution!

Kubernetes support termination notice

Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

The MCP Containers as a Service architecture enables you to easily deploy a Kubernetes cluster
on bare metal with Calico plugin set for Kubernetes networking.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

This section explains how to configure and launch the Kubernetes cluster deployment pipeline
using DriveTrain.

You can enable an external Ceph RBD storage in your Kubernetes cluster as required. For new
deployments, enable the corresponding parameters while creating your deployment metadata
model as described in Create a deployment metadata model. For existing deployments, follow
the Enable an external Ceph RBD storage procedure.

You can also deploy ExternalDNS to set up a DNS management server in order to control DNS
records dynamically through Kubernetes resources and make Kubernetes resources
discoverable through public DNS servers.

If you have a predeployed OpenStack environment, you can deploy a Kubernetes cluster on top
of OpenStack and enable the OpenStack cloud provider functionality. It allows you to leverage
Cinder volumes and Neutron LBaaS (Octavia) that enhance the Kubernetes cluster functionality.

Added in 2019.2.3 ¢ you want to enable Helm for managing Kubernetes charts, configure your
deployment model as described in Enable Helm support. Once configured, Helm will be deployed
on the Kubernetes cluster using the corresponding DriveTrain pipeline.

Depending on your cluster configuration, proceed with one of the sections listed below.

©2025, Mirantis Inc. Page 94

https://github.com/salt-formulas

Mirantis Cloud Platform Deployment Guide

Note
For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web Ul with your Launchpad credentials.

©2025, Mirantis Inc. Page 95

https://ci.mcp.mirantis.net/

Mirantis Cloud Platform Deployment Guide

Prerequisites

Before you proceed with an automated deployment of a Kubernetes cluster, follow the steps
below:

1. If you have swap enabled on the ctl and cmp nodes, modify your Kubernetes deployment
model as described in Add swap configuration to a Kubernetes deployment model.
2. Deploy DriveTrain as described in Deploy MCP DriveTrain.

Now, proceed to deploying Kubernetes as described in Deploy a Kubernetes cluster on bare
metal.

©2025, Mirantis Inc. Page 96

Mirantis Cloud Platform Deployment Guide

Deploy a Kubernetes cluster on bare metal

This section provides the steps to deploy a Kubernetes cluster on bare metal nodes configured
using MAAS with Calico as a Kubernetes networking plugin.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

To automatically deploy a Kubernetes cluster on bare metal nodes:

1. Verify that you have completed the steps described in Prerequisites.

2. Log in to the Jenkins web Ul as Administrator.

Note
To obtain the password for the admin user, run the
salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master
node.

3. Find the k8s_ha_calico heat pipeline job in the global view.
4. Select the Build with Parameters option from the drop-down menu of the selected job.

5. Configure the deployment by setting the following parameters as required:

Deployment parameters

Defualt value Description

ASK | False If True, Jenkins will stop on any failure and ask
_ON either you want to cancel the pipeline or

_ER proceed with the execution ignoring the error.
ROR

©2025, Mirantis Inc. Page 97

Mirantis Cloud Platform Deployment Guide

SAL
T M
AST
ER_
CRE
DEN
TIAL
S

<YOUR_SALT MASTER_CREDE
NTIALS_ID>

The Jenkins ID of credentials for logging in to the
Salt API. For example, salt-credentials. See View
credentials details used in Jenkins pipelines for
details.

SAL
T M
AST
ER_
URL

<YOUR_SALT MASTER_URL>

The URL to access the Salt Master node.

STA
CK_I
NST
ALL

Select core,k8s,calico

Components to install.

STA
CK_
TES
T

Empty

The names of the cluster components to test. By
default, nothing is tested.

STA
CK_
TYP
E

physical

The type of the cluster.

6. Click Build to launch the pipeline.

7. Click Full stage view to track the deployment process.

The following table contains the stages details for the deployment with Calico as a
Kubernetes networking plugin:

1 | Create infrastructure

The deploy pipeline workflow

Title

Creates a base infrastructure using MAAS.

Details

2 | Install core infrastructure

1. Prepares and validates the Salt Master node and Salt
Minion nodes. For example, refreshes pillars and
synchronizes custom modules.

2. Applies the linux,openssh,salt.minion,ntp states to
all nodes.

©2025, Mirantis Inc.

Page 98

Mirantis Cloud Platform Deployment Guide

3 | Install Kubernetes
infrastructure

. Reads the control plane load-balancer address and

applies it to the model.

2. Generates the Kubernetes certificates.

3. Installs the Kubernetes support packages that
include Keepalived, HAProxy, containerd, and etcd.

4 | Install the Kubernetes
control plane and
networking plugins

1. Installs Calico.
2. Sets up etcd.
3. Installs the control plane nodes.

8. When the pipeline has successfully executed, log in to any Kubernetes ctl node and verify
that all nodes have been registered successfully:

kubectl get nodes

Seealso
View the deployment details

©2025, Mirantis Inc.

Page 99

Mirantis Cloud Platform Deployment Guide

Deploy ExternalDNS for Kubernetes

ExternalDNS deployed on Mirantis Cloud Platform (MCP) allows you to set up a DNS management
server for Kubernetes starting with version 1.7. ExternalDNS enables you to control DNS records
dynamically through Kubernetes resources and make Kubernetes resources discoverable
through public DNS servers. ExternalDNS synchronizes exposed Kubernetes Services and
Ingresses with DNS cloud providers, such as Designate, AWS Route 53, Google CloudDNS, and
CoreDNS.

ExternalDNS retrieves a list of resources from the Kubernetes API to determine the desired list of
DNS records. It synchronizes the DNS service according to the current Kubernetes status.

ExternalDNS can use the following DNS backend providers:

* AWS Route 53 is a highly available and scalable cloud DNS web service. Amazon Route 53 is
fully compliant with IPv6.

* Google CloudDNS is a highly available, scalable, cost-effective, and programmable DNS
service running on the same infrastructure as Google.

* OpenStack Designate can use different DNS servers including Bind9 and PowerDNS that are
supported by MCP.

e CoreDNS is the next generation of SkyDNS that can use etcd to accept updates to DNS
entries. It functions as an on-premises open-source alternative to cloud DNS services
(DNSaaS). You can deploy CoreDNS with ExternalDNS if you do not have an active DNS
backend provider yet.

This section describes how to configure and set up ExternalDNS on a new or existing MCP
Kubernetes-based cluster.

©2025, Mirantis Inc. Page 100

https://aws.amazon.com/route53
https://cloud.google.com/dns/
https://docs.openstack.org/designate/latest/
https://coredns.io/

Mirantis Cloud Platform Deployment Guide

Prepare a DNS backend for ExternalDNS

Depending on your DNS backend provider, prepare your backend and the metadata model of
your MCP cluster before setting up ExternalDNS. If you do not have an active DNS backend
provider yet, you can use CoreDNS that functions as an on-premises open-source alternative to
cloud DNS services.

To prepare a DNS backend
Select from the following options depending on your DNS backend:

e For AWS Route 53:

1. Log in to your AWS Route 53 console.

. Navigate to the AWS Services page.

. In the search field, type “Route 53" to find the corresponding service page.

. On the Route 53 page, find the DNS management icon and click Get started now.

. On the DNS management page, click Create hosted zone.

o U A W N

. On the right side of the Create hosted zone window:

1. Add <your_mcp_domain.>.local name.
2. Select the Public Hosted Zone type.

3. Click Create.

You will be redirected to the previous page with two records of NS and SOA type. Keep
the link of this page for verification after the ExernalDNS deployment.

7. Click Back to Hosted zones.

8. Locate and copy the Hosted Zone ID in the corresponding column of your recently
created hosted zone.

9. Add this ID to the following template:

{
"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [
"route53:ChangeResourceRecordSets",
"route53:ListResourceRecordSets",
"route53:GetHostedZone

1,

"Resource": [
"arn:aws:route53:::hostedzone/<YOUR_ZONE_ID>"

]

}
{

©2025, Mirantis Inc. Page 101

Mirantis Cloud Platform Deployment Guide

"Effect" : "Allow",

"Action” : [
"route53:GetChange”

]I

"Resource" : [
"arn:aws:route53:::change/*"

]

}I
{
"Effect" : "Allow",
IIACtionll n [
"route53:ListHostedZones"
]I
"Resource" : [
II*II
]
}

]
}

10 Navigate to Services > IAM > Customer Managed Policies.
11 Click Create Policy > Create your own policy.

12 Fill in the required fields:

* Policy Name field: externaldns

* Policy Document field: use the JSON template provided in step 9
13 Click Validate Policy.

14 Click Create Policy. You will be redirected to the policy view page.
15 Navigate to Users.

16 Click Add user:

1. Add a user name: extenaldns.

2. Select the Programmatic access check box.

3. Click Next: Permissions.

4. Select the Attach existing policy directly option.

5. Select the Customer managed policy type in the Filter drop-down menu.

6. Select the externaldns check box.

©2025, Mirantis Inc. Page 102

Mirantis Cloud Platform Deployment Guide

7. Click Next: Review.
8. Click Create user.

9. Copy the Access key ID and Secret access key.

* For Google CloudDNS:

1. Log in to your Google Cloud Platform web console.
2. Navigate to IAM & Admin > Service accounts > Create service account.

3. In the Create service account window, configure your new ExernalDNS service account:

1. Add a service account name.
2. Assign the DNS Administrator role to the account.

3. Select the Furnish a new private key check box and the JSON key type radio
button.

The private key is automatically saved on your computer.
4. Navigate to NETWORKING > Network services > Cloud DNS.

5. Click CREATE ZONE to create a DNS zone that will be managed by ExternalDNS.

6. In the Create a DNS zone window, fill in the following fields:

e Zone name

* DNS name that must contain your MCP domain address in the
<your_mcp_domain>.local format.

7. Click Create.

You will be redirected to the Zone details page with two DNS names of the NS and SOA
type. Keep this page for verification after the ExernalDNS deployment.

* For Designate:

1. Log in to the Horizon web Ul of your OpenStack environment with Designate.

2. Create a project with the required admin role as well as generate the access
credentials for the project.

3. Create a hosted DNS zone in this project.

* For CoreDNS, proceed to Configure cluster model for ExternalDNS.
Now, proceed to Configure cluster model for ExternalDNS.

©2025, Mirantis Inc. Page 103

Mirantis Cloud Platform Deployment Guide

Configure cluster model for ExternalDNS

After you prepare your DNS backend as described in Prepare a DNS backend for ExternalDNS,
prepare your cluster model as described below.

To configure the cluster model:
1. Select from the following options:
* If you are performing the initial deployment of your MCP Kubernetes cluster:

1. Use the ModelDesigner Ul to create the Kubernetes cluster model. For details, see:
Create a deployment metadata model.

2. While creating the model, select the Kubernetes externaldns enabled check box in
the Kubernetes product parameters section.

* If you are making changes to an existing MCP Kubernetes cluster, proceed to the next
step.
2. Open your Git project repository.

3. In classes/cluster/<cluster_name=>/kubernetes/control.ymil:

1. If you are performing the initial deployment of your MCP Kubernetes cluster, configure
the provider parameter in the snippet below depending on your DNS provider:
coredns|aws|google|designate. If you are making changes to an existing cluster, add
and configure the snippet below. For example:

parameters:
kubernetes:
common:
addons:

externaldns:
enabled: True
namespace: kube-system
image: mirantis/external-dns:latest
domain: domain
provider: coredns

2. Set up the pillar data for your DNS provider to configure it as an add-on. Use the
credentials generated while preparing your DNS provider.

e For Designate:

parameters:
kubernetes:
common:
addons:
externaldns:
externaldns:
enabled: True

©2025, Mirantis Inc. Page 104

Mirantis Cloud Platform Deployment Guide

domain: company.mydomain

provider: designate

designate_os_options:
OS_AUTH_URL: https://keystone_auth_endpoint:5000
OS_PROJECT_DOMAIN_NAME: default
OS_USER_DOMAIN_NAME: default
OS_PROJECT_NAME: admin
OS_USERNAME: admin
OS_PASSWORD: password
OS_REGION_NAME: RegionOne

e For AWS Route 53:

parameters:
kubernetes:
common:
addons:
externaldns:
externaldns:

enabled: True

domain: company.mydomain

provider: aws

aws_options:
AWS_ACCESS_KEY_ID: XXXXXXXXXXXXXXXXXXXX
AWS_SECRET_ACCESS_KEY: XXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXXXXXX

* For Google CloudDNS:

parameters:
kubernetes:
common:
addons:
externaldns:
externaldns:
enabled: True
domain: company.mydomain
provider: google
google_options:
key: "
project: default-123

Note

You can export the credentials from the Google console and process them
using the cat key.json | tr -d 'n' command.

©2025, Mirantis Inc. Page 105

Mirantis Cloud Platform Deployment Guide

e For CoreDNS:

parameters:
kubernetes:
common:
addons:
coredns:
enabled: True
namespace: kube-system
image: coredns/coredns:latest
etcd:
operator_image: quay.io/coreos/etcd-operator:v0.5.2
version: 3.1.8
base_image: quay.io/coreos/etcd

4. Commit and push the changes to the project Git repository.
5. Log in to the Salt Master node.

6. Update your Salt formulas and the system level of your repository:

1. Change the directory to /srv/salt/reclass.
2. Run the git pull origin master command.
3. Run the salt-call state.sls salt.master command.

4. Run the salt-call state.sls reclass command.
Now, proceed to Deploy ExternalDNS.

©2025, Mirantis Inc.

Page 106

Mirantis Cloud Platform Deployment Guide

Deploy ExternalDNS

Before you deploy ExternalDNS, complete the steps described in Configure cluster model for
ExternalDNS.

To deploy ExternalDNS
Select from the following options:

e If you are performing the initial deployment of your MCP Kubernetes cluster, deploy a
Kubernetes cluster as described in Deploy a Kubernetes cluster on bare metal. The
ExternalDNS will be deployed automatically by the MCP DriveTrain pipeline job during the
Kubernetes cluster deployment.

* If you are making changes to an existing MCP Kubernetes cluster, apply the following state:

salt --hard-crash --state-output=mixed --state-verbose=False -C\
'l@kubernetes:master' state.sls kubernetes.master.kube-addons

Once the state is applied, the kube-addons.sh script applies the Kubernetes resources and
they will shortly appear in the Kubernetes resources list.

©2025, Mirantis Inc. Page 107

Mirantis Cloud Platform Deployment Guide

Verify ExternalDNS after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is up and
running using the procedures below depending on your DNS backend.

©2025, Mirantis Inc. Page 108

Mirantis Cloud Platform Deployment Guide

Verify ExternalDNS with Designate backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is
successfully deployed with Designate backend using the procedure below.

To verify ExternalDNS with Designate backend:

1. Log in to any Kubernetes Master node.

2. Source the openrc file of your OpenStack environment:

source keystonerc

Note

If you use Keystone v3, use the source keystonercv3d command instead.

3. Open the Designate shell using the designate command.
4. Create a domain:

domain-create --name nginx.<your_mcp_domain>.local. --email <your_email>

Example of system response:

+ + +
| Field | Value |
+ + +

description	None
created _at	2017-10-13T16:23:26.533547
updated_at	None

| email | designate@example.org |

| ttl | 3600 |

| serial | 1423844606 |

| id | 2a59d62b-d655-49a0-ab4b-ea536d845a32 |
| name | nginx.virtual-mcp11-k8s-calico.local. |

+ + +

5. Verify that the domain was successfully created. Use the id parameter value from the
output of the command described in the previous step. Keep this value for further
verification steps.

For example:

record-list ae59d62b-d655-49a0-ab4b-ea536d845a32

Example of system response:

©2025, Mirantis Inc. Page 109

Mirantis Cloud Platform Deployment Guide

+----+ + + +

lid | type | name | data |

+----+ + + +

|... | NS | nginx.virtual-mcp11-k8s-calico.local. | dns01.bud.mirantis.net.|
+----+ + + +

6. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:
deployment "my-nginx" created
7. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:
service "my-nginx" exposed
8. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated
9. Verify that the domain was associated with the IP inside a Designate record by running the

record-list [id] command. Use the id parameter value from the output of the command
described in step 4. For example:

record-list ae59d62b-d655-49a0-ab4b-ea536d845a32

Example of system response:

oo + + +
| id | type | name | data |
e + + +

| ... | NS | nginx.virtual-mcpl1-k8s-calico.local.| dnsO1.bud.mirantis.net.

©2025, Mirantis Inc. Page 110

Mirantis Cloud Platform Deployment Guide

S + +

+
| ...|A | nginx.virtual-mcp11-k8s-calico.local.| 10.254.70.16 |
e + + +
| ... | TXT | nginx.virtual-mcpl1-k8s-calico.local.| "heritage=external-dns,external-dns/owner=my-identifier"|
B + + +

©2025, Mirantis Inc. Page 111

Mirantis Cloud Platform Deployment Guide

Verify ExternalDNS with CoreDNS backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is
successfully deployed with CoreDNS backend using the procedure below.

To verify ExternalDNS with CoreDNS backend:

1. Log in to any Kubernetes Master node.

2. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:
deployment "my-nginx" created
3. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:
service "my-nginx" exposed
4. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

5. Get the IP of DNS service:

kubectl get svc coredns -n kube-system | awk '{print $2}' | tail -1

Example of system response:

10.254.203.8

6. Select from the following options:

* If your Kubernetes networking is Calico, run the following command from any
Kubernetes Master node.

©2025, Mirantis Inc. Page 112

Mirantis Cloud Platform Deployment Guide

* If your Kubernetes networking is OpenContrail, run the following command from any
Kubernetes pod.

nslookup nginx.<your_domain>.local. <coredns_ip>

Example of system response:

Server: 10.254.203.8 Address: 10.254.203.8#53
Name: test.my_domain.local Address: 10.254.42.128

©2025, Mirantis Inc. Page 113

Mirantis Cloud Platform Deployment Guide

Verify ExternalDNS with Google CloudDNS backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is

successfully deployed with Google CloudDNS backend using the procedure below.
To verify ExternalDNS with Google CloudDNS backend:

1. Log in to any Kubernetes Master node.

2. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:
deployment "my-nginx" created
3. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:
service "my-nginx" exposed
4. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

5. Log in to your Google Cloud Platform web console.
6. Navigate to the Cloud DNS > Zone details page.

7. Verify that your DNS zone now has two more records of the A and TXT type. Both records

must point to nginx.<your_domain>.local.

©2025, Mirantis Inc.

Page 114

Mirantis Cloud Platform Deployment Guide

Verify ExternalDNS with AWS Route 53 backend after deployment

After you complete the steps described in Deploy ExternalDNS, verify that ExternalDNS is
successfully deployed with AWS Route 53 backend using the procedure below.

To verify ExternalDNS with AWS Route 53 backend:

1. Log in to any Kubernetes Master node.

2. Start my-nginx:

kubectl run my-nginx --image=nginx --port=80

Example of system response:
deployment "my-nginx" created
3. Expose my-nginx:

kubectl expose deployment my-nginx --port=80 --type=ClusterIP

Example of system response:
service "my-nginx" exposed
4. Annotate my-nginx:

kubectl annotate service my-nginx \
"external-dns.alpha.kubernetes.io/hostname=nginx.<your_domain>.local."

Example of system response:

service "my-nginx" annotated

5. Log in to your AWS Route 53 console.
6. Navigate to the Services > Route 53 > Hosted zones > YOUR_ZONE_NAME page.

7. Verify that your DNS zone now has two more records of the A and TXT type. Both records
must point to nginx.<your_domain>.local.

©2025, Mirantis Inc. Page 115

Mirantis Cloud Platform Deployment Guide

Deploy OpenStack cloud provider for Kubernetes

Note

This feature is available as technical preview in the MCP Build ID 2019.2.0. Starting from
the MCP 2019.2.2 update, the feature is fully supported.

If you have a predeployed OpenStack environment, you can deploy a Kubernetes cluster on VMs
on top of OpenStack and enable the OpenStack cloud provider functionality.

The OpenStack cloud provider allows you to leverage Cinder volumes and Neutron LBaaS
(Octavia) that enhance the Kubernetes cluster functionality.

The two main functions provided by the OpenStack cloud provider are PersistentVolume for pods
and LoadBalancer for services.

©2025, Mirantis Inc. Page 116

Mirantis Cloud Platform Deployment Guide

Considerations when using the OpenStack cloud provider

The OpenStack cloud provider for Kubernetes has several requirements in OpenStack, which are
outlined in the OpenStack cloud provider Overview section.

In addition to component requirements, there are operational requirements:

e Instance names must have a proper DNS label, consisting of letters, numbers, and dashes,
ending with an alphanumeric character. Underscores and other symbols are invalid.

¢ All Kubernetes nodes must be Nova instances in the same project/tenant. Bare metal hosts
or OpenStack instances from another tenant cannot be joined to the cluster with the
OpenStack cloud provider.

¢ All Kubernetes nodes must be on the same Neutron subnet.

e OpenStack public APIs (such as Keystone API) must be accessible from all Kubernetes
nodes.

In addition to operational requirements, the OpenStack cloud provider introduces a significant
security concern. As a result, a non-privileged user should be created in the project/tenant
where the instances reside specifically for this purpose. The reason behind this is that every
single Kubernetes node (both Master node and Node) must contain the entire credentials in
cleartext in the /etc/kubernetes/cloud-config.conf file. These credentials are put into pillar as
well, so this is also a security vector to be aware of.

©2025, Mirantis Inc. Page 117

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/kubernetes-cluster-plan/cloud-provider-overview.html

Mirantis Cloud Platform Deployment Guide

Enable the OpenStack cloud provider

Before you deploy a new Kubernetes cluster on VMs on top of OpenStack, enable the OpenStack
cloud provider by making corresponding changes in you deployment metadata model.

Caution!

Mirantis recommends that you enable the OpenStack cloud provider on new Kubernetes
clusters only. Enabling the OpenStack cloud provider on existing Kubernetes clusters may
impact your workloads. The Kubernetes nodes will be re-registered with FQDN-based
names identical to the corresponding instances names on your OpenStack environment.
This may impact your workloads pinned to particular nodes and requires a manual clean
up of stalled nodes.

To enable the OpenStack cloud provider:

1. Verify that you have an existing OpenStack environment to be used to deploy a Kubernetes
cluster on top of OpenStack. For the requirements details, see: Considerations when using
the OpenStack cloud provider.

2. Prepare six VMs that will include the Salt Master node and corresponding network
configuration to be used for deploying a new Kubernetes cluster. For details, see:
Prerequisites.

3. Open your Git project repository with Reclass model on the cluster level.

4.In classes/cluster/<cluster_ name>/kubernetes/init.yml, add the following parameters,
replacing the credentials to reflect your OpenStack environment:

_param:

kubernetes_cloudprovider_enabled: True
kubernetes_cloudprovider_type: '‘openstack’

kubernetes_openstack_provider_cloud_user: admin
kubernetes_openstack_provider_cloud_password: secret
kubernetes_openstack_provider_cloud_auth_url: <public_keystone_endpoint>
kubernetes_openstack_provider_cloud_tenant_id: <tenant id>
kubernetes_openstack_provider_cloud_domain_id: default
kubernetes_openstack_provider_cloud_region: RegionOne
kubernetes_openstack_provider_Ilbaas_subnet_id: <subnet id>
kubernetes_openstack _provider_floating_net_id: <floating_net id>

©2025, Mirantis Inc. Page 118

Mirantis Cloud Platform Deployment Guide

Note

The subnet_id parameter is the UUID of the subnet from which you can access
internal addresses of the Kubernetes nodes, or external addresses if internal ones are
not present on a cluster. Do not use the network ID.

5. Commit and push the changes to the project Git repository.
6. Proceed with further cluster configuration as required. OpenStack cloud provider will be
automatically deployed with the Kubernetes cluster.

After you deploy the OpenStack cloud provider, proceed to Verify the OpenStack cloud provider
after deployment.

©2025, Mirantis Inc. Page 119

Mirantis Cloud Platform Deployment Guide

Verify the OpenStack cloud provider after deployment

After you enable the OpenStack cloud provider as described in Enable the OpenStack cloud
provider and deploy it together with your Kubernetes cluster, verify that it has been successfully

deployed using the procedure below.
To verify the OpenStack cloud provider:

1. Log in to any Kubernetes Master node.

2. Create a claiml.yaml file with the following content:

kind: PersistentVolumeClaim
apiVersion: vl

metadata:
name: claiml
spec:
storageClassName: cinder
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

3. Run the following command:

kubectl apply -f claiml.yaml

4. Create a cinder-test-rc.yaml file with the following content:

apiVersion: vl
kind: ReplicationController
metadata:
name: server
labels:
name: nginx
spec:
replicas: 1
template:
metadata:

labels:
name: nginx

spec:

containers:

- name: server
image: nginx
volumeMounts:

- mountPath: /var/lib/www/html
name: cinderpvc

volumes:

©2025, Mirantis Inc.

Page 120

Mirantis Cloud Platform Deployment Guide

- name: cinderpvc
persistentVolumeClaim:
claimName: claiml

5. Run the following command:

kubectl apply -f cinder-test-rc.yaml

6. Verify that the volume was created:
openstack volume list

7. Verify that Neutron LBaaS can create the LoadBalancer objects:

1. Create an nginx-rs.yml file with the following content:

apiVersion: extensions/vlbetal
kind: ReplicaSet
metadata:
name: nginx
spec:
replicas: 4
template:
metadata:
labels:

app: nginx

spec:
containers:

- name: nginx
image: nginx:1.10
resources:

requests:
cpu: 100m
memory: 100Mi

2. Run the following commands:

kubectl create -f nginx-rs.ymi
kubectl expose rs nginx --port 80 --type=LoadBalancer

8. Verify that the service has an external IP:

kubectl get services -owide

Example of system response:

©2025, Mirantis Inc. Page 121

Mirantis Cloud Platform Deployment Guide

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
kubernetes 10.254.0.1 <none> 443/TCP 40m <none>
nginx 10.254.18.214 192.168.10.96,172.17.48.159 80:31710/TCP 1m app=nginx

9. Verify that LoadBalancer was created in OpenStack:

neutron Ibaas-loadbalancer-list

In the output, the vip_address should match the first external IP for the service created.

Seealso

Troubleshoot the OpenStack cloud provider

©2025, Mirantis Inc. Page 122

Mirantis Cloud Platform Deployment Guide

Troubleshoot the OpenStack cloud provider

The table in this section lists solutions for issues related to the OpenStack cloud provider
operations after deployment.

Issue Solution

Cinder volume cannot be .)
mounted 1. Verify logs for the pod that failed and the kubelet logs on the

Kubernetes Nodes. Identify and fix permission issues, if any.

Cinder volume is not , . .
created 1. Verify that your user has privileges to create Cinder volumes:

1. Source the openrc file of your environment. For details,
see: Create OpenStack client environment scripts.
2. Run the openstack volume create test --size 1.

2. Verify logs for openstack-cloud-controller-manager on each
Kubernetes Master node.

The kubelet agent does , , o :
not register with 1. Verify that the instance name does not contain invalid

apiserver characters. An instance name must be a RFC-953 compliant,
which states that a DNS name must consist of characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-),
and period (.). It is best to destroy and recreate the instance
because the configdrive metadata located in /dev/vdb cannot
be updated automatically even after renaming an instance.

2. Verify that your cloud credentials are valid. The kubelet agent
will not start if the credentials are wrong.

©2025, Mirantis Inc. Page 123

https://docs.openstack.org/ocata/install-guide-obs/keystone-openrc.html

Mirantis Cloud Platform Deployment Guide

Heat stack cannot be
deleted because of
LoadBalancer services

. Delete all service resources before deleting the Heat stack

.If the stack was already deleted and is now in the

. Delete the stack safely with the openstack stack delete

using the kubectl delete svc --all command.

DELETE_FAILED state, purge all LBaaS objects visible to your
OpenStack user with the following commands:

for pool in "neutron Ibaas-pool-list -c id -f value; do
while read member; do
neutron Ibaas-member-delete $member $pool

done < <(neutron Ibaas-member-list $pool -c id -f value)
neutron lbaas-pool-delete $pool

done

for listener in “neutron Ibaas-listener-list -c id -f value™; do
neutron Ibaas-listener-delete $listener

done

for Ib in "neutron Ibaas-loadbalancer-list -c id -f value™; do
neutron Ibaas-loadbalancer-delete $Ib

done

STACKNAME command.

LBaaS is stuck in
Pending state

. Verify the subnet ID used for deployment. The subnet should

. Verify that the public net ID is correct. Use the neutron

. Verify that Octavia is deployed and configured. The neutron

match the network attached to the first interface on the
instances (such as net0l). Use the openstack subnet list
command to get a list of subnets.

net-external-list command to find the public net.

Ibaas-loadbalancer-list command must return either 0 or
some entries, but not an error. For the Octavia deployment
details, see Configure load balancing with OpenStack Octavia.

Seealso

OpenStack cloud provider overview

Seealso

MCP Operations Guide: Kubernetes operations

©2025, Mirantis Inc.

Page 124

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/kubernetes-cluster-plan/cloud-provider-overview.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/kubernetes-operations.html

Mirantis Cloud Platform Deployment Guide

Deploy StackLight LMA with the DevOps Portal

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

This section explains how to deploy StackLight LMA with the DevOps Portal (OSS) using Jenkins.

Before you proceed with the deployment, verify that your cluster level model contains
configuration to deploy StackLight LMA as well as OSS. More specifically, check whether you
enabled StackLight LMA and OSS as described in Services deployment parameters, and specified
all the required parameters for these MCP components as described in StackLight LMA product
parameters and OSS parameters.

Note
For production environments, CI/CD should be deployed on a per-customer basis.

For testing purposes, you can use the central Jenkins lab that is available for Mirantis
employees only. To be able to configure and execute Jenkins pipelines using the lab, you
need to log in to the Jenkins web Ul with your Launchpad credentials.

To deploy StackLight LMA with the DevOps Portal:

1. In a web browser, open http://<ip_address>:8081 to access the Jenkins web Ul.

Note

The IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of
the Reclass model under the cicd_control_address parameter variable.

2. Log in to the Jenkins web Ul as admin.

Note
To obtain the password for the admin user, run the
salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master
node.

3. Find the Deploy - OpenStack job in the global view.

©2025, Mirantis Inc. Page 125

https://ci.mcp.mirantis.net/

Mirantis Cloud Platform Deployment Guide

4. Select the Build with Parameters option from the drop-down menu of the Deploy -
OpenStack job.

5. For the STACK_INSTALL parameter, specify the stacklight and oss values.

Warning

If you enabled Stacklight LMA and OSS in the Reclass model, you should specify both
stacklight and oss to deploy them together. Otherwise, the Runbooks Automation
service (Rundeck) will not start due to Salt and Rundeck behavior.

Note

For the details regarding other parameters for this pipeline, see Deploy - OpenStack
environment parameters.

6. Click Build.

7. 0nce the cluster is deployed, you can access the DevOps Portal at the the IP address
specified in the stacklight monitor_address parameter on port 8800.

8. Customize the alerts as described in MCP Operations Guide: Alerts that require tuning.

9. Once StackLight LMA is deployed, customize the alerts as described in MCP Operations
Guide: Alerts that require tuning.

Seealso

* Deploy an OpenStack environment

* View the deployment details

©2025, Mirantis Inc. Page 126

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/alerts/tuning-alerts.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/alerts/tuning-alerts.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/alerts/tuning-alerts.html

Mirantis Cloud Platform Deployment Guide

View credentials details used in Jenkins pipelines

MCP uses the Jenkins Credentials Plugin that enables users to store credentials in Jenkins
globally. Each Jenkins pipeline can operate only the credential ID defined in the pipeline’s
parameters and does not share any security data.

To view the detailed information about all available credentials in the Jenkins Ul:

1. Log in to your Jenkins master located at http://<jenkins_master_ip_address>:8081.

Note

The Jenkins master IP address is defined in the
classes/cluster/<cluster_ name>/cicd/init.yml file of the Reclass model under the
cicd_control_address parameter variable.

2. Navigate to the Credentials page from the left navigation menu.

All credentials listed on the Credentials page are defined in the Reclass model. For example,
on the system level in the ../../system/jenkins/client/credential/gerrit.yml file.

Examples of users definitions in the Reclass model:

* With the RSA key definition:

jenkins:
client:
credential:
gerrit:
username: ${_ param:gerrit_ admin_user}
key: ${ param:gerrit_ admin_private_key}

¢ With the open password:

jenkins:
client:
credential:
salt:
username: salt
password: ${ param:salt_api_password}

©2025, Mirantis Inc. Page 127

Mirantis Cloud Platform Deployment Guide

View the deployment details

Once you have enforced a pipeline in CI/CD, you can monitor the progress of its execution on the
job progress bar that appears on your screen. Moreover, Jenkins enables you to analyze the
details of the deployments process.

To view the deployment details:

1. Log in to the Jenkins web UI.
2. Under Build History on the left, click the number of the build you are interested in.
3. Go to Console Output from the navigation menu to view the deployment progress.

4. When the deployment succeeds, verify the deployment result in Horizon.

Note

The IP address for Horizon is defined in the
classes/cluster/<name>/openstack/init.yml file of the Reclass model under the
openstack proxy address parameter variable.

To troubleshoot an OpenStack deployment:

1. Log in to the Jenkins web UI.
2. Under Build History on the left, click the number of the build you are interested in.
3. Verify Full log to determine the cause of the error.

4. Rerun the deployment with the failed component only. For example, if StackLight LMA fails,
run the deployment with only StackLight selected for deployment. Use steps 6-10 of the
Deploy an OpenStack environment instruction.

©2025, Mirantis Inc. Page 128

Mirantis Cloud Platform Deployment Guide

Deploy an MCP cluster manually

This section explains how to manually configure and install the software required for your MCP
cluster. For an easier deployment process, use the automated DriveTrain deployment procedure

described in Deploy an MCP cluster using DriveTrain.

Note

The modifications to the metadata deployment model described in this section provide
only component-specific parameters and presuppose the networking-specific parameters
related to each OpenStack component, since the networking model may differ depending
on a per-customer basis.

©2025, Mirantis Inc. Page 129

Mirantis Cloud Platform Deployment Guide

Deploy an OpenStack environment manually

This section explains how to manually configure and install software required by your MCP
OpenStack environment, such as support services, OpenStack services, and others.

Prepare VMs to install OpenStack

This section instructs you on how to prepare the virtual machines for the OpenStack services
installation.

To prepare VMs for a manual installation of an OpenStack environment:

1. Log in to the Salt Master node.
2. Verify that the Salt Minion nodes are synchronized:

salt "**' saltutil.sync_all

3. Configure basic operating system settings on all nodes:

salt "*' state.sls salt.minion,linux,ntp,openssh

©2025, Mirantis Inc. Page 130

Mirantis Cloud Platform Deployment Guide

Enable TLS support

To assure the confidentiality and integrity of network traffic inside your OpenStack deployment,
you should use cryptographic protective measures, such as the Transport Layer Security (TLS)
protocol.

By default, only the traffic that is transmitted over public networks is encrypted. If you have
specific security requirements, you may want to configure internal communications to connect
through encrypted channels. This section explains how to enable the TLS support for your MCP
cluster.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

©2025, Mirantis Inc. Page 131

Mirantis Cloud Platform Deployment Guide

Encrypt internal APl HTTP transport with TLS
This section explains how to encrypt the internal OpenStack API HTTP with TLS.
To encrypt the internal API HTTP transport with TLS:

1. Verify that the Keystone, Nova Placement, Cinder, Barbican, Gnocchi, Panko, and Manila API
services, whose formulas support using Web Server Gateway Interface (WSGI) templates

from Apache, are running under Apache by adding the following classes to your deployment
model:

* In openstack/control.yml:

classes:

- system.apache.server.site.barbican

- system.apache.server.site.cinder

- system.apache.server.site.gnocchi

- system.apache.server.site.manila

- system.apache.server.site.nova-placement
- system.apache.server.site.panko

* In openstack/telemetry.yml:

classes:

- system.apache.server.site.gnocchi
- system.apache.server.site.panko

2. Add SSL configuration for each WSGI template by specifying the following parameters:

* In openstack/control.yml:

parameters:
_param:

apache_proxy_ssl:
enabled: true
engine: salt
authority: "${ param:salt_minion_ca_authority}"
key file: "/etc/ssl/private/internal_proxy.key"
cert_file: "/etc/ssl/certs/internal_proxy.crt"
chain_file: "/etc/ssl/certs/internal_proxy-with-chain.crt"

apache_cinder_ssl: ${ param:apache_proxy ssl}
apache_keystone_ssl: ${ param:apache_proxy_ssl}
apache_barbican_ssl: ${ param:apache_proxy ssl}
apache_manila_ssl: ${ param:apache_proxy_ssl}
apache_nova_placement: ${ param:apache _proxy ssl}

©2025, Mirantis Inc. Page 132

Mirantis Cloud Platform Deployment Guide

* In openstack/telemetry.yml:

parameters:
_param:

apache_gnocchi_api_address: ${ param:single_address}
apache_panko_api_address: ${ param:single_address}
apache_gnocchi_ssl: ${_param:nginx_proxy_ssl}
apache_panko_ssl: ${_param:nginx_proxy_ssl}

3. For services that are still running under Eventlet, configure TLS termination proxy. Such
services include Nova, Neutron, Ironic, Glance, Heat, Aodh, and Designate.

Depending on your use case, configure proxy on top of either Apache or NGINX by defining
the following classes and parameters:

* In openstack/control.yml:

* To configure proxy on Apache:

classes:

- system.apache.server.proxy.openstack.designate
- system.apache.server.proxy.openstack.glance

- system.apache.server.proxy.openstack.heat

- system.apache.server.proxy.openstack.ironic

- system.apache.server.proxy.openstack.neutron

- system.apache.server.proxy.openstack.nova

parameters:
_param:

Configure proxy to redirect request to locahost:

apache_proxy openstack api_address: ${ param:cluster_local host}
apache_proxy openstack designate host: 127.0.0.1
apache_proxy openstack _glance_host: 127.0.0.1

apache_proxy openstack _heat _host: 127.0.0.1

apache_proxy openstack _ironic_host: 127.0.0.1

apache_proxy openstack neutron_host: 127.0.0.1

apache_proxy openstack nova_host: 127.0.0.1

apache:
server:
site:
apache_proxy openstack_api_glance registry:
enabled: true
type: proxy

©2025, Mirantis Inc. Page 133

Mirantis Cloud Platform Deployment Guide

name: openstack api_glance_registry
proxy:
host: ${ param:apache_proxy_openstack glance_registry host}
port: 9191
protocol: http
host:
name: ${ param:apache_proxy_openstack api_host}
port: 9191
address: ${ param:apache_proxy openstack api_address}
ssl: ${_param:apache_proxy ssl}

* To configure proxy on NGINX:

classes:

- system.nginx.server.single

- system.nginx.server.proxy.openstack_api

- system.nginx.server.proxy.openstack.designate
- system.nginx.server.proxy.openstack.ironic

- system.nginx.server.proxy.openstack.placement

Delete proxy sites that are running under Apache:
_param:

nginx:
server:
site:
nginx_proxy_openstack_api_keystone:
enabled: false
nginx_proxy_openstack_api_keystone_private:
enabled: false

Configure proxy to redirect request to locahost
_param:

nginx_proxy _openstack_api_address: ${ param:cluster_local address}
nginx_proxy_openstack_cinder_host: 127.0.0.1
nginx_proxy_openstack_designate_host: 127.0.0.1
nginx_proxy_openstack_glance_host: 127.0.0.1
nginx_proxy_openstack_heat_host: 127.0.0.1
nginx_proxy_openstack_ironic_host: 127.0.0.1
nginx_proxy_openstack_neutron_host: 127.0.0.1
nginx_proxy_openstack_nova_host: 127.0.0.1

Add nginx SSL settings:

©2025, Mirantis Inc. Page 134

Mirantis Cloud Platform Deployment Guide

_param:

nginx_proxy_ssl:
enabled: true
engine: salt
authority: "${ param:salt_minion_ca_authority}"
key file: "/etc/ssl/private/internal_proxy.key"
cert_file: "/etc/ssl/certs/internal_proxy.crt"
chain_file: "/etc/ssl/certs/internal_proxy-with-chain.crt"

* In openstack/telemetry.yml:

classes:
- system.nginx.server.proxy.openstack aodh

parameters:
_param:

.“nginx_proxy_openstack_aodh_host: 127.0.0.1
4. Edit the openstack/init.yml file:

1. Add the following parameters to the cluster model:

parameters:
_param:

cluster_public_protocol: https

cluster_internal_protocol: https

aodh_service_protocol: ${_param:cluster_internal_protocol}
barbican_service_protocol: ${ param:cluster_internal_protocol}
cinder_service_protocol: ${_param:cluster_internal_protocol}
designate_service_protocol: ${ param:cluster_internal_protocol}
glance_service _protocol: ${ param:cluster_internal_protocol}
gnocchi_service_protocol: ${ param:cluster_internal_protocol}
heat service _protocol: ${ param:cluster_internal_protocol}
ironic_service_protocol: ${ param:cluster_internal_protocol}
keystone_service_protocol: ${ param:cluster_internal_protocol}
manila_service_protocol: ${_param:cluster_internal_protocol}
neutron_service_protocol: ${_param:cluster_internal_protocol}
nova_service_protocol: ${ param:cluster_internal_protocol}
panko_service_protocol: ${ param:cluster_internal_protocol}

2. Depending on your use case, define the following parameters for the OpenStack
services to verify that the services running behind TLS proxy are binded to the
localhost:

©2025, Mirantis Inc. Page 135

Mirantis Cloud Platform Deployment Guide

* In openstack/control.yml:

OpenS_tack Required configuration
service
Barbican bind:
address: 127.0.0.1
identity:
protocol: https
Cinder identity:
protocol: https
osapi:
host: 127.0.0.1
glance:
protocol: https
Designate identity:
protocol: https
bind:
api:
address: 127.0.0.1
Glance bind:
address: 127.0.0.1
identity:
protocol: https
registry:
protocol: https
Heat bind:
api:
address: 127.0.0.1
api_cfn:
address: 127.0.0.1
api_cloudwatch:
address: 127.0.0.1
identity:
protocol: https
Horizon identity:
encryption: ssl

©2025, Mirantis Inc.

Page 136

Mirantis Cloud Platform Deployment Guide

Ironic . .
ironic:

bind:
api:
address: 127.0.0.1

Neutron bind:

address: 127.0.0.1
identity:
protocol: https

Nova
controller:

bind:

private_address: 127.0.0.1
identity:

protocol: https
network:

protocol: https
glance:

protocol: https
metadata:

bind:

address: ${ param:nova_service_host}

Panko panko:

server:
bind:
host: 127.0.0.1

* In openstack/telemetry.yml:

parameters:
_param:

aodh:
server:
bind:
host: 127.0.0.1
identity:
protocol: http

gnocchi:
server:
identity:
protocol: http

©2025, Mirantis Inc. Page 137

Mirantis Cloud Platform Deployment Guide

panko:
server:
identity:
protocol: https

5. For StackLight LMA, in stacklight/client.yml, enable Telegraf to correctly resolve the CA of
the identity endpoint:

docker:
client:
stack:
monitoring:
service:
remote_agent:
volumes:
- Jetc/ssl/certs/:/etc/ssl/certs/

6. For RADOS Gateway, specify the following pillar in ceph/rgw.yml:

ceph:
radosgw:
identity:
keystone_verify_ssl: True
host: ${_param:cluster_internal_protocol}://${_param:ceph_radosgw_keystone_host}

7. For the existing deployments, add the following pillar to openstack/control/init.yml to
update Nova cells. Otherwise, nova-conductor will use a wrong port for AMQP connections.

nova:
controller:
update_cells: true

8. Select one of the following options:

e If you are performing an initial deployment of your cluster, proceed with further
configuration as required.

* If you are making changes to an existing cluster:

1. Log in to the Salt Master node.
2. Refresh pillars:

salt "*' saltutil.refresh_pillar

3. Apply the Salt states depending on your use case. For example:

©2025, Mirantis Inc. Page 138

Mirantis Cloud Platform Deployment Guide

salt -C 'l@haproxy' state.apply haproxy

salt -C 'l@apache' state.apply apache

salt 'ctlO*' state.apply keystone,nova,neutron,heat,glance,cinder,designate,manila,ironic
salt 'mdb0*' state.apply aodh,ceilometer,panko,gnocchi

salt -C 'l@ceph' state.apply ceph

salt -C "l@docker:client" state.sls docker.client

salt -C "l@nova:controller" state.sls nova.controller

©2025, Mirantis Inc. Page 139

Mirantis Cloud Platform Deployment Guide

Enable TLS for RabbitMQ and MySQL backends

Using TLS protects the communications within your cloud environment from tampering and
eavesdropping. This section explains how to configure the OpenStack databases backends to
require TLS.

Caution!

TLS for MySQL is supported starting from the Pike OpenStack release.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

To encrypt RabbitMQ and MySQL communications:
1. Add the following classes to the cluster model of the nodes where the server is located:

* For the RabbitMQ server:

classes:
Enable tls, contains paths to certs/keys
- service.rabbitmq.server.ssl
Definition of cert/key
- system.salt.minion.cert.rabbitmq_server

e For the MySQL server (Galera cluster):

classes:
##+# Enable tls, contains paths to certs/keys
- service.galera.ssl
Definition of cert/key
- system.salt.minion.cert.mysql.server

2. Verify that each node trusts the CA certificates that come from the Salt Master node:

_param:
salt_minion_ca_host: cfg01.${_param:cluster_domain}
salt:
minion:
trusted_ca_minions:
- ¢cfg01.${ param:cluster domain}

©2025, Mirantis Inc. Page 140

Mirantis Cloud Platform Deployment Guide

3. Deploy RabbitMQ and MySQL as described in Install support services.

4. Apply the changes by executing the salt.minion state:

salt -l salt:minion:enabled state.apply salt.minion

Seealso

* Database transport security in the OpenStack Security Guide

* Messaging security in the OpenStack Security Guide

©2025, Mirantis Inc. Page 141

https://docs.openstack.org/security-guide/databases/database-transport-security.html
https://docs.openstack.org/security-guide/messaging/security.html

Mirantis Cloud Platform Deployment Guide

Enable TLS for client-server communications

This section explains how to encrypt the communication paths between the OpenStack services

and the message queue service (RabbitMQ) as well as the MySQL database.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

To enable TLS for client-server communications:

1. For each of the OpenStack services, enable the TLS protocol usage for messaging and
database communications by changing the cluster model as shown in the examples below:

e For a controller node:

* The database server configuration example:

classes:

- system.salt.minion.cert.mysqgl.server

- service.galera.ssl

parameters:
barbican:
server:
database:
ssl:
enabled: True
heat:
server:
database:
ssl:
enabled: True
designate:
server:
database:
ssl:
enabled: True
glance:
server:
database:
ssl:
enabled: True
neutron:
server:
database:

©2025, Mirantis Inc.

Page 142

Mirantis Cloud Platform Deployment Guide

ssl:
enabled: True
nova:
controller:
database:
ssl:
enabled: True
cinder:
controller:
database:
ssl:
enabled: True
volume:
database:
ssl:
enabled: True
keystone:
server:
database:
ssl:
enabled: True

* The messaging server configuration example:

classes:

- service.rabbitmq.server.ssl
- system.salt.minion.cert.rabbitmq_server

parameters:

designate:
server:
message_queue:
port: 5671
ssl:
enabled: True

barbican:
server:
message_queue:
port: 5671
ssl:
enabled: True

heat:
server:

©2025, Mirantis Inc.

Page 143

Mirantis Cloud Platform Deployment Guide

message_queue:
port: 5671
ssl:
enabled: True

glance:
server:
message_queue:
port: 5671
ssl:
enabled: True

neutron:
server:
message_queue:
port: 5671
ssl:
enabled: True
nova:
controller:
message_queue:
port: 5671
ssl:
enabled: True

cinder:
controller:
message_queue:
port: 5671
ssl:
enabled: True
volume:
message_queue:
port: 5671
ssl:
enabled: True

keystone:
server:
message_queue:
port: 5671
ssl:
enabled: True

* For a compute node, the messaging server configuration example:

©2025, Mirantis Inc. Page 144

Mirantis Cloud Platform Deployment Guide

parameters:
neutron:
compute:
message_queue:
port: 5671
ssl:
enabled: True
nova:
compute:
message_queue:
port: 5671
ssl:
enabled: True

* For a gateway node, the messaging configuration example:

parameters:
neutron:
gateway:
message_queue:
port: 5671
ssl:
enabled: True

2. Refresh the pillar data to synchronize the model update at all nodes:

salt "*' saltutil.refresh_pillar
salt '"*' saltutil.sync_all

3. Proceed to Install OpenStack services.

©2025, Mirantis Inc.

Page 145

Mirantis Cloud Platform Deployment Guide

Enable libvirt control channel and live migration over TLS

This section explains how to enable TLS encryption for libvirt. By protecting libvirt with TLS, you
prevent your cloud workloads from security compromise. The attacker without an appropriate
TLS certificate will not be able to connect to libvirtd and affect its operation. Even if the user
does not define custom certificates in their Reclass configuration, the certificates are created
automatically.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

To enable libvirt control channel and live migration over TLS:

1. Log in to the Salt Master node.

2. Select from the following options:

* To use dynamically generated pillars from the Salt minion with the automatically
generated certificates, add the following class in the
classes/cluster/cluster_name/openstack/compute/init.yml of your Recalss model:

classes:
- system.nova.compute.libvirt.ssl

* To install the pre-created certificates, define them as follows in the pillar:

nova:
compute:
libvirt:
tls:
enabled: True
key: certificate_content
cert: certificate_content
cacert: certificate_content
client:
key: certificate_content
cert: certificate_content

3. Optional. In classes/cluster/cluster name/openstack/compute/init.yml, modify the following
default configuration for SSL ciphers as required:

©2025, Mirantis Inc. Page 146

Mirantis Cloud Platform Deployment Guide

Warning

The default SSL ciphers configuration below contains only the TLS v1.2 FIPS-approved
cipher suites. Using weak or medium strengh encryption suites can potentially lead to
security or compliance issues in your cluster. Therefore, Mirantis highly recommends
keeping the default configuration for this parameter.

nova:
complute:
libvirt:
tis:

priority: "SECURE256:-VERS-ALL:+VERS-TLS1.2:-KX-ALL:+ECDHE-RSA:+ECDHE-ECDSA:\
-CIPHER-ALL:+AES-256-GCM: +AES-256-CBC:-MAC-ALL: +AEAD:+SHA384"

4. Apply the changes by running the nova state for all compute nodes:

salt 'cmmp*' state.apply nova

©2025, Mirantis Inc. Page 147

Mirantis Cloud Platform Deployment Guide

Enable TLS encryption between the OpenStack compute nodes and VNC clients

The Virtual Network Computing (VNC) provides a remote console or remote desktop access to
guest virtual machines through either the OpenStack dashboard or the command-line interface.
The OpenStack Compute service users can access their instances using the VNC clients through
the VNC proxy. MCP enables you to encrypt the communication between the VNC clients and
OpenStack compute nodes with TLS.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

To enable TLS encryption for VNC:

1. Open your Reclass model Git repository on the cluster level.

2. Enable the TLS encryption of communications between the OpenStack compute nodes and
VNC proxy:

Note

The data encryption over TLS between the OpenStack compute nodes and VNC proxy
is supported starting with the OpenStack Pike release.

1. In openstack/compute/init.yml, enable the TLS encryption on the OpenStack compute
nodes:

- system.nova.compute.libvirt.ssl.vnc

parameters:
_param:

nova_vncproxy url: https://${_param:cluster_public_host}:6080

2. In openstack/control.yml, enable the TLS encryption on the VNC proxy:

- system.nova.control.novncproxy.tls

parameters:
_param:

nova_vncproxy_url: https://${_param:cluster_public_host}:6080

©2025, Mirantis Inc. Page 148

Mirantis Cloud Platform Deployment Guide

3. In openstack/proxy.yml, define the HTTPS protocol for the nginx_proxy_novnc site:

nginx:
server:
site:
Nginx_proxy_novnc:
proxy:
protocol: https

3. Enable the TLS encryption of communications between VNC proxy and VNC clients in
openstack/control.yml:

Note

The data encryption over TLS between VNC proxy and VNC clients is supported
starting with the OpenStack Queens release.

nova:
controller:
NOVNCProxy:
tis:
enabled: True

4, Available from 2019.2.4 o tinnal. Specify a required TLS version and allowed SSL ciphers to use
by the Nova console proxy server:

nova:
controller:
novncproxy:
tis:
enabled: True
version: <tls version>
ciphers: <ciphers>

* The <tls _version> value is one of default, tlsvl 1, tilsvl 2, or tlsvl 3. Depending on
your Python version, not all TLS versions may be available, in which case a graceful
fallback to the newest possible version will be performed.

* The <ciphers> value is a coma-separated list of allowed SSL ciphers, depending on
your system and OpenSSL version. To obtain the list of available ciphers, run openssl
ciphers on an OpenStack controller node.

5. Apply the changes:

©2025, Mirantis Inc. Page 149

Mirantis Cloud Platform Deployment Guide

salt 'cmp*' state.apply nova
salt 'ctl*' state.apply nova
salt 'prx*' state.apply nginx

©2025, Mirantis Inc. Page 150

Mirantis Cloud Platform Deployment Guide

Configure OpenStack APIs to use X.509 certificates for MySQL

MCP enables you to enhance the security of your OpenStack cloud by requiring X.509
certificates for authentication. Configuring OpenStack APIs to use X.509 certificates for
communicating with the MySQL database provides greater identity assurance of OpenStack
clients making the connection to the database and ensures that the communications are
encrypted.

When configuring X.509 for your MCP cloud, you enable the TLS support for the communications
between MySQL and the OpenStack services.

The OpenStack services that support X.509 certificates include: Aodh, Barbican, Cinder,
Designate, Glance, Gnocchi, Heat, Ironic, Keystone, Manila Neutron, Nova, and Panko.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

To enable the X.509 and SSL support:
1. Configure the X.509 support on the Galera side:

1. Include the following class to cluster hame/openstack/database.yml of your
deployment model:

system.galera.server.database.x509.<openstack _service_nhame>

2. Apply the changes by running the galera state:

Note

On an existing environment, the already existing database users and their
privileges will not be replaced automatically. If you want to replace the existing
users, you need to remove them manually before applying the galera state.

salt -C 'l@galera:master' state.sls galera
2. Configure the X.509 support on the service side:

1. Configure all OpenStack APIs that support X.509 to use X.509 certificates by setting
openstack_mysql x509 enabled: True on the cluster level of your deployment model:

©2025, Mirantis Inc. Page 151

Mirantis Cloud Platform Deployment Guide

parameters:
_param:

openstack_mysql x509_enabled: True

2. Define the certificates:

1. Generate certificates automatically using Salt:

salt "*' state.sls salt.minion

2. Optional. Define pre-created certificates for particular services in pillars as

described

in the table below.

Note

The table illustrates how to define pre-created certificates through paths.
Though, you can include a certificate content to a pillar instead. For
example, for the Aodh, use the following structure:

aodh:
server:
database:
x509:

cacert: (certificate content)
cert: (certificate content)
key: (certificate content)

Open

Stack

servi
ce

Aodh

Define custom certificates in
pillar

aodh:
server:
database:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

Apply the change

salt -C 'l@aodh:server' state.sls aodh

©2025, Mirantis Inc.

Page 152

Mirantis Cloud Platform Deployment Guide

Barbic
an

barbican:
server:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@barbican:server' state.sls barbican.serve

Cinder

cinder:
controller:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>
volume:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@cinder:controller' state.sls cinde€

Desig
nate

designate:
server:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@designate:server' state.sls designat]

Glanc

glance:
server:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@glance:server' state.sls glance.serve

0]

=

©2025, Mirantis Inc.

Page 153

Mirantis Cloud Platform Deployment Guide

Gnocc
hi

gnocchi:
common:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@gnocchi:server' state.sls gnocchi.serve

=

Heat

heat:
server:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@heat:server' state.sls hea

Ironic

ironic:
api:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>
conductor:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@ironic:api' state.sls ironic.api
salt -C 'l@ironic:conductor' state.sls ironic.conduct

or

Keyst
one

keystone:
server:
database:
x509:
ca_cert: <path/to/cert/file>

cert_file: <path/to/cert/file>

key file: <path/to/cert/file>

salt -C 'l@keystone:server' state.sls keystone.servel

=

©2025, Mirantis Inc.

Page 154

Mirantis Cloud Platform Deployment Guide

Manila .
manila:

common:
database:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

salt -C 'l@manila:common' state.sls manila

Neutr

on neutron:

server:
database:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

salt -C 'l@neutron:server' state.sls neutron.server

Nova
nova:

controller:
database:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

salt -C 'l@nova:controller' state.sls nova.controlle

=2

Panko panko:

server:
database:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

salt -C 'l@panko:server' state.sls pankp

3. To verify that a particular client is able to authorize with X.509, verify the output of the
mysql --user-name=<component_name=> on any controller node. For example:

mysql --user-name=nova --host=10.11.0.50 --password=<password> --silent \

--ssl-ca=/etc/nova/ssl/mysql/ca-cert.pem \
--ssl-cert=/etc/nova/ssl/mysql/client-cert.pem \
--ssl-key=/etc/nova/ssl/mysql/client-key.pem

Seealso

MCP Operations Guide: Enable SSL certificates monitoring

©2025, Mirantis Inc.

Page 155

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/add-new-features-to-existing-deployment/enable-certificates-monitoring.html

Mirantis Cloud Platform Deployment Guide

©2025, Mirantis Inc. Page 156

Mirantis Cloud Platform Deployment Guide

Configure OpenStack APIs to use X.509 certificates for RabbitMQ

MCP enables you to enhance the security of your OpenStack environment by requiring X.509
certificates for authentication. Configuring the OpenStack services to use X.509 certificates for
communicating with the RabbitMQ server provides greater identity assurance of OpenStack
clients making the connection to message_queue and ensures that the communications are
encrypted.

When configuring X.509 for your MCP cloud, you enable the TLS support for the communications
between RabbitMQ and the OpenStack services.

The OpenStack services that support X.509 certificates for communicating with the RabbitMQ
server include Aodh, Barbican, Cinder, Designate, Glance, Heat, Ironic, Keystone, Manila,
Neutron, and Nova.

Note

The procedures included in this section apply to new MCP OpenStack deployments only,
unless specified otherwise.

To enable the X.509 and SSL support for communications between the OpenStack services and
RabbitMQ:

1. Configure the X.509 support on the RabbitMQ server side:

1. Include the following class to <cluster name>/openstack/message_queue.yml of your
deployment model:

- system.rabbitmq.server.ssl
2. Refresh the pillars:

salt -C 'l@rabbitmqg:server' saltutil.refresh_pillar

3. Verify the pillars:

Note

X.509 remains disabled until you enable it on the cluster level as described
further in this procedure.

salt -C 'l@rabbitmqg:server' pillar.get rabbitmq:server:x509

2. Configure the X.509 support on the service side:

©2025, Mirantis Inc. Page 157

Mirantis Cloud Platform Deployment Guide

1. Configure all OpenStack services that support X.509 to use X.509 certificates for
RabbitMQ by setting the following parameters on the cluster level of your deployment
model in <cluster_name>/openstack/init.yml:

parameters:
_param:
rabbitmq_ssl _enabled: True
openstack rabbitmq_x509 enabled: True
openstack rabbitmq_port: 5671

2. Refresh the pillars:

salt '*' saltutil.refresh_pillar

3. Verify that the pillars for the OpenStack services are updated. For example, for the
Nova controller:

salt -C 'l@nova:controller' pillar.get nova:controller:message_queue:x509

Example of system response:

ctl03.example-cookiecutter-model.local:
ca_file:
/etc/nova/ssl/rabbitmqg/ca-cert.pem
cert_file:
/etc/nova/ssl/rabbitmqg/client-cert.pem
enabled:
True
key file:
/etc/nova/ssl/rabbitmqg/client-key.pem
ctl02.example-cookiecutter-model.local:
ca_file:
/etc/nova/ssl/rabbitmqg/ca-cert.pem
cert_file:
/etc/nova/ssl/rabbitmq/client-cert.pem
enabled:
True
key file:
/etc/nova/ssl/rabbitmqg/client-key.pem
ctl01l.example-cookiecutter-model.local:
ca_file:
/etc/nova/ssl/rabbitmqg/ca-cert.pem
cert_file:
/etc/nova/ssl/rabbitmqg/client-cert.pem

©2025, Mirantis Inc. Page 158

Mirantis Cloud Platform Deployment Guide

enabled:
True
key file:
/etc/nova/ssl/rabbitmag/client-key.pem
3. Generate certificates automatically using Salt:

1. For the OpenStack services:

salt "*' state.sls salt.minion
2. For the RabbitMQ server:
salt -C 'l@rabbitmq:server' state.sls salt.minion.cert
4. Verify that the RabbitmMQ cluster is healthy:
salt -C 'l@rabbitmq:server' cmd.run 'rabbitmqctl cluster_status'

5. Apply the changes on the server side:

salt -C 'l@rabbitmg:server' state.sls rabbitmq

6. Apply the changes for the OpenStack services by running the appropriate service states
listed in the Apply the change column of the Definition of custom X.509 certificates for
RabbitMQ table in the next step.

7. Optional. Define pre-created certificates for particular services in pillars as described in the
table below.

Note

The table illustrates how to define pre-created certificates through paths. Though,
you can include a certificate content to a pillar instead. For example, for the Aodh,
use the following structure:

aodh:
server:
message_queue:
x509:
cacert: <certificate_content>
cert: <certificate_content>
key: <certificate_content>

Definition of custom X.509 certificates for RabbitMQ

©2025, Mirantis Inc. Page 159

Mirantis Cloud Platform Deployment Guide

OpenS . . .
tack s Define custor_r:lcertlflcates in Apply the change
ervice pifiar
Aodh aodh: salt -C 'l@aodh:server' state.sls aodh
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
Ea rbica barbican: salt -C 'l@barbican:server' state.sls barbican.server
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
Cinder salt -C 'l@cinder:controller or I@cinder:volume' state.sls cinder
cinder:
controller:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
volume:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
aDteeSign designate: salt -C 'l@designate:server' state.sls designate
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

©2025, Mirantis Inc.

Page 160

Mirantis Cloud Platform Deployment Guide

Glance glance: salt -C 'l@glance:server' state.sls glance.server
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
Heat
heat: salt -C 'l@heat:server' state.sls heat
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
Ironic . . salt -C 'l@ironic:api' state.sls ironic.api
|r0n_|C: salt -C 'l@ironic:conductor' state.sls ironic.conductor
api:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
conductor:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
ﬁ:ysto keystone: salt -C 'l@keystone:server' state.sls keystone.server
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

©2025, Mirantis Inc.

Page 161

Mirantis Cloud Platform Deployment Guide

Manila manila: salt -C 'l@manila:common’ state.sls manila

common:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key_file: <path/to/cert/file

salt -C 'l@neutron:server or I@neutron:gateway or I@neutron:compute' state.sls neutron

Neutro
n neutron:
server:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
neutron:
gateway:
message_queue:
x509:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>
Nova salt -C 'l@nova:controller or I@nova:compute' state.sls nova
nova:
controller:
message_queue:
x509:

ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

nova:
compute:
message_queue:
x5009:
ca_cert: <path/to/cert/file>
cert_file: <path/to/cert/file>
key file: <path/to/cert/file>

8. To verify that a particular client can authorize to RabbitMQ with an X.509 certificate, verify
the output of the rabbitmqctl list connections command on any RabbitMQ node. For
example:

salt msg01* cmd.run 'rabbitmqctl list_connections peer_host peer_port peer _cert subject ssl'

©2025, Mirantis Inc. Page 162

Mirantis Cloud Platform Deployment Guide

Seealso

MCP Operations Guide: Enable SSL certificates monitoring

©2025, Mirantis Inc. Page 163

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/add-new-features-to-existing-deployment/enable-certificates-monitoring.html

Mirantis Cloud Platform Deployment Guide

Install support services

Your installation should include a number of support services such as RabbitMQ for messaging;
HAProxy for load balancing, proxying, and HA; GlusterFS for storage; and others. This section
provides the procedures to install the services and verify they are up and running.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.

Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

©2025, Mirantis Inc. Page 164

Mirantis Cloud Platform Deployment Guide

Deploy Keepalived

Keepalived is a framework that provides high availability and load balancing to Linux systems.
Keepalived provides a virtual IP address that network clients use as a main entry point to access
the CI/CD services distributed between nodes. Therefore, in MCP, Keepalived is used in HA
(multiple-node warm-standby) configuration to keep track of services availability and manage
failovers.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.

Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

To deploy Keepalived:
salt -C 'l@keepalived:cluster' state.sls keepalived -b 1

To verify the VIP address:

1. Determine the VIP address for the current environment:

salt -C 'l@keepalived:cluster' pillar.get keepalived:cluster:instance:VIP:address

Example of system output:

ctl03.mk22-lab-basic.local:
172.16.10.254
ctl02.mk22-lab-basic.local:
172.16.10.254
ctl01.mk22-lab-basic.local:
172.16.10.254

Note

You can also find the Keepalived VIP address in the following files of the Reclass
model:

©2025, Mirantis Inc. Page 165

Mirantis Cloud Platform Deployment Guide

* /usr/share/salt-formulas/reclass/service/keepalived/cluster/single.yml, parameter
keepalived.cluster.instance.VIP.address

* /srv/salt/reclass/classes/cluster/<ENV_NAME=>/openstack/control.yml, parameter
cluster_vip_address

2. Verify if the obtained VIP address is assigned to any network interface on one of the
controller nodes:

salt -C 'l@keepalived:cluster' cmd.run "ip a | grep <ENV_VIP_ADDRESS>"

Note

Remember that multiple clusters are defined. Therefore, verify that all of them are up and
running.

©2025, Mirantis Inc. Page 166

Mirantis Cloud Platform Deployment Guide

Deploy NTP
The Network Time Protocol (NTP) is used to properly synchronize services among your
OpenStack nodes.

To deploy NTP:

salt "*' state.sls ntp

Seealso
Enable NTP authentication

©2025, Mirantis Inc. Page 167

Mirantis Cloud Platform Deployment Guide

Deploy GlusterFS

GlusterFS is a highly-scalable distributed network file system that enables you to create a
reliable and redundant data storage. GlusterFS keeps all important data for Database,
Artifactory, and Gerrit in shared storage on separate volumes that makes MCP Cl infrastructure
fully tolerant to failovers.

To deploy GlusterFS:

salt -C 'l@glusterfs:server' state.sls glusterfs.server.service
salt -C 'l@glusterfs:server' state.sls glusterfs.server.setup -b 1

To verify GlusterFS:

salt -C 'l@glusterfs:server' cmd.run "gluster peer status; gluster volume status" -b 1

©2025, Mirantis Inc. Page 168

Mirantis Cloud Platform Deployment Guide

Deploy RabbitMQ

RabbitMQ is an intermediary for messaging. It provides a platform to send and receive messages
for applications and a safe place for messages to live until they are received. All OpenStack
services depend on RabbitMQ message queues to communicate and distribute the workload

across workers.
To deploy RabbitMQ:

1. Log in to the Salt Master node.
2. Apply the rabbitmq state:

salt -C 'l@rabbitmg:server' state.sls rabbitmq
3. Verify the RabbitMQ status:

salt -C 'l@rabbitmg:server' cmd.run "rabbitmaqctl cluster status"

©2025, Mirantis Inc. Page 169

Mirantis Cloud Platform Deployment Guide

Deploy Galera (MySQL)

Galera cluster is a synchronous multi-master database cluster based on the MySQL storage
engine. Galera is an HA service that provides scalability and high system uptime.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.

Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

Note
For details on the Galera service configurations, see Configure Galera parameters.

To deploy Galera:

1. Log in to the Salt Master node.
2. Apply the galera state:

salt -C 'l@galera:master' state.sls galera
salt -C 'l@galera:slave' state.sls galera -b 1

3. Verify that Galera is up and running:

salt -C 'l@galera:master' mysql.status | grep -Al wsrep_cluster_size
salt -C 'l@galera:slave' mysql.status | grep -Al wsrep_cluster_size

©2025, Mirantis Inc. Page 170

Mirantis Cloud Platform Deployment Guide

Deploy HAProxy

HAProxy is a software that provides load balancing for network connections while Keepalived is
used for configuring the IP address of the VIP.

Warning

The HAProxy state should not be deployed prior to Galera. Otherwise, the Galera
deployment will fail because of the ports/IP are not available due to HAProxy is already
listening on them attempting to bind to 0.0.0.0.

Therefore, verify that your deployment workflow is correct:

1. Keepalived
2. Galera
3. HAProxy

Note
For details on HAProxy configurations, see Configure HAProxy parameters.

To deploy HAProxy:

salt -C 'l@haproxy:proxy' state.sls haproxy
salt -C 'l@haproxy:proxy' service.status haproxy
salt -1 'haproxy:proxy' service.restart rsyslog

©2025, Mirantis Inc. Page 171

Mirantis Cloud Platform Deployment Guide

Deploy Memcached

Memcached is used for caching data for different OpenStack services such as Keystone. The
Memcached service is running on the controller nodes for the control plane services and on
proxy nodes for Horizon.

To deploy Memcached:

salt -C 'l@memcached:server' state.sls memcached

Seealso

MCP Operations guide: Disable the Memcached listener on the UDP port

©2025, Mirantis Inc. Page 172

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/disable-memcached-on-udp.html

Mirantis Cloud Platform Deployment Guide

Deploy a DNS backend for Designate

Berkely Internet Name Domain (BIND9) and PowerDNS are the two underlying Domain Name
system (DNS) servers that Designate supports out of the box. You can use either new or existing
DNS server as a backend for Designate.

©2025, Mirantis Inc. Page 173

Mirantis Cloud Platform Deployment Guide

Deploy BIND9 for Designate

Berkely Internet Name Domain (BIND9) server can be used by Designhate as its underlying
backend. This section describes how to configure an existing or deploy a new BIND9 server for
Designate.

©2025, Mirantis Inc. Page 174

Mirantis Cloud Platform Deployment Guide

Configure an existing BIND9 server for Designate

If you already have a running BIND9 server, you can configure and use it for the Designate
deployment.

The example configuration below has three predeployed BIND9 servers.

To configure an existing BIND9 server for Designate:

1. Open your BIND9 server Ul.
2. Verify that the BIND9 configuration files contain rdnc.key for Designate.

The following text is an example of /etc/bind/named.conf.local on the managed BIND9
server with the IPs allowed for Designate and rdnc.key:

key "designate" {
algorithm hmac-sha512;
secret "4pc+X4PDgb2q+5072dISm72LM1Ds9X2EYZjgg+nmsS7F/C8H+zO0fLLBunoitw==";
b
controls {
inet 10.0.0.3 port 953
allow {
172.16.10.101;
172.16.10.102;
172.16.10.103;
}
keys {
designate;
¥
b

3. Open classes/cluster/cluster_name/openstack in your Git project repository.

4. In init.yml, add the following parameters:

bind9_node0l1_address: 10.0.0.1
bind9_node02_address: 10.0.0.2
bind9_node03_address: 10.0.0.3
mysql_designate_password: password
keystone_designate_password: password
designate_service_host: ${ param:openstack control address}
designate_bind9_rndc_algorithm: hmac-sha512
designate_bind9_rndc_key: >
4pc+X4PDgb2q+5072dISm72LM1Ds9X2EYZjqg+nmsS7F/C8H+z0fLLBunoitw==
designate_domain_id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate_pool_ns_records:
- hostname: 'nsl.example.org.’
priority: 10
designate_pool_nameservers:
- host: ${ param:bind9 _node0Ol1 address}
port: 53

©2025, Mirantis Inc. Page 175

Mirantis Cloud Platform Deployment Guide

- host: ${ param:bind9 _node02_address}
port: 53
- host: ${ param:bind9 _node03_address}
port: 53
designate_pool_target_type: bind9
designate_pool_target_masters:
- host: ${ param:openstack control node0Ol1 address}
port: 5354
- host: ${ param:openstack control node02_address}
port: 5354
- host: ${ param:openstack control node03 address}
port: 5354
designate_pool_target_options:
host: ${ param:bind9_node0Ol1 address}
port: 53
rndc_host: ${ param:bind9_node01l address}
rndc_port: 953
rndc_key file: /etc/designate/rndc.key
designate_version: ${_ param:openstack version}

5. In control.yml, modify the parameters section. Add targets according to the number of
BIND9 severs that will be managed, three in our case.

Example:

designate:
server:
backend:
bind9:
rndc_key: ${ param:designate_bind9 rndc_key}
rndc_algorithm: ${ param:designate _bind9 rndc_algorithm}
pools:
default:
description: 'test pool
targets:
default:
description: 'test targetl’
defaultl:
type: ${ param:designate_pool _target type}
description: 'test target2'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:bind9 node02_address}
port: 53
rndc_host: ${ param:bind9_node02_address}
rndc_port: 953
rndc_key file: /etc/designate/rndc.key
default2:

©2025, Mirantis Inc. Page 176

Mirantis Cloud Platform Deployment Guide

type: ${ param:designate _pool_target type}
description: 'test target3'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:bind9_node03 _address}
port: 53
rndc_host: ${ param:bind9 _node03_address}
rndc_port: 953
rndc_key file: /etc/designate/rndc.key

6. Add your changes to a new commit.

7. Commit and push the changes.
Once done, proceed to deploy Designate as described in Deploy Designate.

©2025, Mirantis Inc. Page 177

Mirantis Cloud Platform Deployment Guide

Prepare a deployment model for a new BIND9 server

Before you deploy a BIND9 server as a backend for Designate, prepare your cluster deployment

model as described below.

The example provided in this section describes the configuration of the deployment model with

two BIND9 servers deployed on separate VMs of the infrastructure nodes.

To prepare a deployment model for a new BIND9 server:

1. Open the classes/cluster/cluster_ name/openstack directory in your Git project repository.

2. Create a dns.yml file with the following parameters:

classes:
- system.linux.system.repo.mcp.extra
- system.linux.system.repo.mcp.apt_mirantis.ubuntu
- system.linux.system.repo.mcp.apt_mirantis.saltstack
- system.bind.server.single
- cluster.cluster_name.infra
parameters:
linux:
network:
interface:
ens3: ${_param:linux_single_interface}
bind:
server:
key:
designate:
secret: "${ param:designate_bind9 rndc_key}"
algorithm: "${_param:designate_bind9_rndc_algorithm}"
allow_new_zones: true
query: true
control:
mgmt:
enabled: true
bind:
address: ${ param:single_address}
port: 953
allow:
- ${ param:openstack control node01 address}
- ${ param:openstack control node02 address}
- ${ param:openstack control node03 address}
- ${ param:single_address}
-127.0.0.1
keys:
- designate
client:
enabled: true
option:
default:

©2025, Mirantis Inc.

Page 178

Mirantis Cloud Platform Deployment Guide

server: 127.0.0.1
port: 953
key: designate
key:
designate:
secret: "${ param:designate_bind9 _rndc_key}"
algorithm: "${ param:designate _bind9 rndc_algorithm}"

Note

In the parameters above, substitute cluster name with the appropriate value.

3. In control.yml, modify the parameters section as follows. Add targets according to the
number of the BIND9 servers that will be managed.

designate:
server:
backend:
bind9:
rndc_key: ${_param:designate_bind9_rndc_key}
rndc_algorithm: ${_param:designate_bind9_rndc_algorithm}
pools:
default:
description: 'test pool'
targets:
default:
description: 'test targetl'
defaultl:
type: ${ param:designate_pool_target type}
description: 'test target2'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:openstack _dns node02_address}
port: 53
rndc_host: ${ param:openstack dns node02_address}
rndc_port: 953
rndc_key file: /etc/designate/rndc.key

©2025, Mirantis Inc. Page 179

Mirantis Cloud Platform Deployment Guide

Note

In the example above, the first target that contains default parameters is defined in
openstack/init.yml. The second target is defined explicitly. You can add more targets
in this section as required.

4. In init.yml, modify the parameters section.

Example:

openstack dns node0l1l hostname: dns0O1l
openstack dns node02_hostname: dns02
openstack _dns node0l deploy address: 10.0.0.8
openstack _dns node02 deploy address: 10.0.0.9
openstack _dns node0Ol address: 10.0.0.1
openstack _dns node02_address: 10.0.0.2
mysql designate password: password
keystone_designate_password: password
designate_service_host: ${ param:openstack control address}
designate_bind9 rndc_key: >
4dpc+X4PDgb2g+5072dISm72LM1Ds9X2EYZjgg+nmsS7F/C8H+zO0fLLBunoitw==
designate_bind9 rndc_algorithm: hmac-sha512
designate_domain_id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate_pool ns _records:
- hostname: 'nsl.example.org.’
priority: 10
designate_pool nameservers:
- host: ${ param:openstack dns nodeOl address}
port: 53
- host: ${ param:openstack dns node02 address}
port: 53
designate_pool_target type: bind9
designate_pool_target _masters:
- host: ${ param:openstack control node0O1l address}
port: 5354
- host: ${ param:openstack control node02 address}
port: 5354
- host: ${ param:openstack control node03 address}
port: 5354
designate_pool _target options:
host: ${ param:openstack dns node0l address}
port: 53
rndc_host: ${ param:openstack dns nodeOl address}
rndc_port: 953
rndc_key file: /etc/designate/rndc.key
designate_version: ${ param:openstack version}

©2025, Mirantis Inc. Page 180

Mirantis Cloud Platform Deployment Guide

linux:
network:

host:

dnsO1:
address: ${ param:openstack dns nodeOl address}
names:
- ${_param:openstack_dns_node0l_hostname}
- ${_param:openstack_dns node0l hostname}.${ param:cluster domain}

dns02:
address: ${ param:openstack dns node02 address}
names:
- ${_param:openstack dns_node02_hostname}
- ${_param:openstack dns_node02_hostname}.${ param:cluster domain}

5. In classes/cluster/cluster_name/infra/kvm.yml, add the following class:

classes:
- system.salt.control.cluster.openstack_dns_cluster

6. In classes/cluster/cluster_name/infra/config.yml, modify the classes and parameters
sections.

Example:

* |n the classes section:

classes:
- system.reclass.storage.system.openstack _dns_cluster

* In the parameters section, add the DNS VMs.

reclass:
storage:
node:
openstack _dns _nodeO1l:
params:
linux_system_codename: xenial
deploy_address: ${ param:openstack database node03 deploy address}
openstack _dns _nodeO1l:
params:
linux_system_codename: xenial
deploy_address: ${ param:openstack dns nodeOl deploy_address}
openstack _dns_node02:
params:
linux_system_codename: xenial
deploy_address: ${ param:openstack dns node02 deploy_address}

©2025, Mirantis Inc. Page 181

Mirantis Cloud Platform Deployment Guide

openstack_message_queue_nodeO1l:

params:
linux_system_codename: xenial

7. Commit and push the changes.

Once done, proceed to deploy the BIND9 server service as described in Deploy a new BIND9

server for Designate.

©2025, Mirantis Inc.

Page 182

Mirantis Cloud Platform Deployment Guide

Deploy a new BIND9 server for Designate

After you configure the Reclass model for a BIND9 server as the backend for Designate, proceed

to deploying the BIND9 server service as described below.

To deploy a BIND9 server service:

1. Log in to the Salt Master node.
2. Configure basic operating system settings on the DNS nodes:

salt -C 'l@bind:server' state.sls linux,ntp,openssh
3. Apply the following state:

salt -C 'l@bind:server' state.sls bind

Once done, proceed to deploy Designate as described in Deploy Designate.

©2025, Mirantis Inc.

Page 183

Mirantis Cloud Platform Deployment Guide

Deploy PowerDNS for Designate

PowerDNS server can be used by Designate as its underlying backend. This section describes
how to configure an existing or deploy a new PowerDNS server for Designate.

The default PowerDNS configuration for Designate uses the Designate worker role. If you need
live synchronization of DNS zones between Designate and PowerDNS servers, you can configure
Designate with the pool_manager role. The Designate Pool Manager keeps records consistent
across the Designate database and the PowerDNS servers. For example, if a record was
removed from the PowerDNS server due to a hard disk failure, this record will be automatically
restored from the Designate database.

©2025, Mirantis Inc. Page 184

Mirantis Cloud Platform Deployment Guide

Configure an existing PowerDNS server for Designate

If you already have a running PowerDNS server, you can configure and use it for the Designate
deployment.

The example configuration below has three predeployed PowerDNS servers.

To configure an existing PowerDNS server for Designate:

1. Open your PowerDNS server Ul.

2. In etc/powerdns/pdns.conf, modify the following parameters:

* allow-axfr-ips - must list the IPs of the Desighate nodes, which will be located on the
OpenStack APl nodes

* api-key - must coincide with the designate_pdns_api_key parameter for Designate in
the Reclass model

* webserver - must have the value yes

* webserver-port - must coincide with the powerdns webserver port parameter for
Designate in the Reclass model

* api - must have the value yes to enable management through API

* disable-axfr - must have the value no to enable the axfr zone updates from the
Designate nodes

Example:

allow-axfr-ips=172.16.10.101,172.16.10.102,172.16.10.103,127.0.0.1
allow-recursion=127.0.0.1
api-key=VxK9cMIFL5Ae

api=yes
config-dir=/etc/powerdns
daemon=yes
default-soa-name=a.very.best.power.dns.server
disable-axfr=no

guardian=yes
include-dir=/etc/powerdns/pdns.d
launch=

local-address=10.0.0.1
local-port=53

master=no

setgid=pdns

setuid=pdns

slave=yes
soa-minimum-ttl=3600
socket-dir=/var/run
version-string=powerdns
webserver=yes
webserver-address=10.0.0.1

©2025, Mirantis Inc. Page 185

Mirantis Cloud Platform Deployment Guide

webserver-password=gJ6n3gVaYP8eS
webserver-port=8081

3. Open the classes/cluster/cluster hame/openstack directory in your Git project repository.

4. In init.yml, add the following parameters:

powerdns_nodeOl _address: 10.0.0.1
powerdns_node02_address: 10.0.0.2
powerdns_node03_address: 10.0.0.3
powerdns_webserver_password: gJ6n3gVaYP8eS
powerdns_webserver_port: 8081
mysql_designate_password: password
keystone_designate_password: password
designate_service_host: ${ param:openstack control address}
designate_domain_id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate_pdns_api_key: VxXK9cMIFL5Ae
designate_pdns_api_endpoint: >
"http://${_param:powerdns_nodeOl address}:${ param:powerdns _webserver_port}"
designate_pool_ns_records:
- hostname: 'nsl.example.org.’
priority: 10
designate_pool_nameservers:
- host: ${ param:powerdns _node0Ol address}
port: 53
- host: ${ param:powerdns_node02_address}
port: 53
- host: ${ param:powerdns_node03 address}
port: 53
designate_pool_target_type: pdns4
designate_pool_target_masters:
- host: ${ param:openstack control node0O1l address}
port: 5354
- host: ${ param:openstack control node02_address}
port: 5354
- host: ${ param:openstack control node03 address}
port: 5354
designate_pool_target_options:
host: ${ param:powerdns_nodeO1l address}
port: 53
api_token: ${ param:designate_pdns_api _key}
api_endpoint: ${ param:designate_pdns_api_endpoint}
designate_version: ${ param:openstack version}

5.In control.yml, modify the parameters section. Add targets according to the number of
PowerDNS severs that will be managed, three in our case.

Example:

©2025, Mirantis Inc. Page 186

Mirantis Cloud Platform Deployment Guide

designate:
server:
backend:
pdns4:
api_token: ${ param:designate_pdns_api_key}
api_endpoint: ${ param:designate_pdns_api_endpoint}
pools:
default:
description: 'test pool'
targets:
default:
description: 'test targetl'
defaultl:
type: ${ param:designate _pool_target type}
description: 'test target2'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:powerdns _node02_address}
port: 53
api_endpoint: >

"http://${_param:${_param:powerdns _node02 address}}:

${ _param:powerdns_webserver_port}"
api_token: ${ param:designate_pdns_api_key}
default2:
type: ${ param:designate _pool_target type}
description: 'test target3'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:powerdns _node03_address}
port: 53
api_endpoint: >
"http://${_param:powerdns_node03 address}:
${ _param:powerdns_webserver_port}"
api_token: ${ param:designate_pdns_api_key}

Once done, proceed to deploy Designate as described in Deploy Designate.

©2025, Mirantis Inc.

Page 187

Mirantis Cloud Platform Deployment Guide

Prepare a deployment model for a new PowerDNS server with the worker role

Before you deploy a PowerDNS server as a backend for Designate, prepare your deployment
model with the default Designate worker role as described below.

If you need live synchronization of DNS zones between Designate and PowerDNS servers,
configure Designate with the pool_manager role as described in Prepare a deployment model for
a new PowerDNS server with the pool_manager role.

The examples provided in this section describe the configuration of the deployment model with
two PowerDNS servers deployed on separate VMs of the infrastructure nodes.

To prepare a deployment model for a new PowerDNS server:

1. Open the classes/cluster/cluster name/openstack directory of your Git project repository.

2. Create a dns.yml file with the following parameters:

classes:
- system.powerdns.server.single
- cluster.cluster_name.infra
parameters:
linux:
network:
interface:
ens3: ${_param:linux_single_interface}
host:
dnsO01:
address: ${ param:openstack_dns node0l address}
names:
-dns01
- dns01.${ param:cluster domain}
dns02:
address: ${ param:openstack_dns node02_address}
names:
- dns02
- dns02.${ param:cluster domain}
powerdns:
server:
enabled: true
bind:
address: ${ param:single_address}
port: 53
backend:
engine: sqglite
dbname: pdns.sqglite3
dbpath: /var/lib/powerdns
api:
enabled: true
key: ${ param:designate_pdns_api_key}
webserver:

©2025, Mirantis Inc. Page 188

Mirantis Cloud Platform Deployment Guide

enabled: true

address: ${ param:single_address}

port: ${ param:powerdns_webserver_port}

password: ${ param:powerdns_webserver_password}
axfr_ips:

- ${_param:openstack _control node0l1 address}

- ${_param:openstack _control node02_address}

- ${_param:openstack _control node03 address}

-127.0.0.1

Note

If you want to use the MySQL backend instead of the default SQLite one, modify the
backend section parameters accordingly and configure your metadata model as
described in Enable the MySQL backend for PowerDNS.

3. In init.yml, define the following parameters:
Example:

openstack_dns_node0l_address: 10.0.0.1
openstack_dns_node02_address: 10.0.0.2
powerdns_webserver_password: gJ6n3gVaYP8eS
powerdns_webserver_port: 8081
mysql_designate_password: password
keystone_designate_password: password
designate_service_host: ${ param:openstack control address}
designate_domain_id: 5186883b-91fb-4891-bd49-e6769234a8fc
designate_pdns_api_key: VxXK9cMIFL5Ae
designate_pdns_api_endpoint: >
"http://${_param:openstack_dns_node0l_address}:${_param:powerdns_webserver_port}"
desighate_pool_ns_records:
- hostname: 'nsl.example.org.’'
priority: 10
designate_pool_nameservers:
- host: ${ param:openstack _dns node01l address}
port: 53
- host: ${ param:openstack _dns node02 address}
port: 53
designate_pool_target_type: pdns4
designate_pool_target_masters:
- host: ${ param:openstack control node01 address}
port: 5354
- host: ${_param:openstack _control node02_address}
port: 5354

©2025, Mirantis Inc. Page 189

Mirantis Cloud Platform Deployment Guide

- host: ${ param:openstack control node03 address}
port: 5354

designate_pool_target_options:

host: ${ param:openstack dns node01l address}

port: 53

api_token: ${ param:designate_pdns_api_key}

api_endpoint: ${ param:designate_pdns_api_endpoint}
designate_version: ${_param:openstack_version}
designate_worker_enabled: true

4. In control.yml, define the following parameters in the parameters section:

Example:

designate:
worker:
enabled: ${_param:designate_worker_enabled}
server:
backend:
pdnsa4:
api_token: ${ param:designate_pdns_api _key}
api_endpoint: ${ param:designate_pdns_api_endpoint}
pools:
default:
description: 'test pool’
targets:
default:
description: 'test target1'
defaultl:
type: ${ param:designate_pool_target type}
description: 'test target2'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:openstack dns node02_address}
port: 53
api_endpoint: >
"http://${_param:openstack_dns_node02 address}:
${ param:powerdns_webserver_port}"
api_token: ${ param:designate_pdns_api _key}

5. In classes/cluster/cluster_name/infra/kvm.yml, modify the classes and parameters sections.
Example:

* |n the classes section:

classes:
- system.salt.control.cluster.openstack_dns_cluster

©2025, Mirantis Inc. Page 190

Mirantis Cloud Platform Deployment Guide

* In the parameters section, add the DNS parameters for VMs with the required location
of DNS VMs on kvm nodes and the planned resource usage for them.

salt:
control:
openstack.dns:
cpu: 2
ram: 2048
disk_profile: small
net_profile: default
cluster:
internal:
node:
dnsO1:
provider: kvmO01.${ param:cluster domain}
dns02:
provider: kvm02.${ param:cluster domain}

6. In classes/cluster/cluster_name/infra/config.yml, modify the classes and parameters
sections.

Example:

* |n the classes section:

classes:
- system.reclass.storage.system.openstack _dns_cluster

¢ In the parameters section, add the DNS VMs. For example:

reclass:
storage:
node:
openstack _dns_nodeO1l:
params:
linux_system_codename: xenial
openstack _dns_node02:
params:
linux_system_codename: xenial

7. Commit and push the changes.

Once done, proceed to deploy the PowerDNS server service as described in Deploy a new
PowerDNS server for Designate.

©2025, Mirantis Inc. Page 191

Mirantis Cloud Platform Deployment Guide

Prepare a deployment model for a new PowerDNS server with the pool_manager role

If you need live synchronization of DNS zones between Designate and PowerDNS servers, you
can configure Designate with the pool manager role as described below. The Designate Pool
Manager keeps records consistent across the Designate database and the PowerDNS servers.
For example, if a record was removed from the PowerDNS server due to a hard disk failure, this
record will be automatically restored from the Designate database.

To configure a PowerDNS server with the default Designate worker role, see Prepare a
deployment model for a new PowerDNS server with the worker role.

The examples provided in this section describe the configuration of the deployment model with
two PowerDNS servers deployed on separate VMs of the infrastructure nodes.

To prepare a model for a new PowerDNS server with the pool_manager role:

1. Open the classes/cluster/cluster name/openstack directory of your Git project repository.

2. Create a dns.yml file with the following parameters:

classes:
- system.powerdns.server.single
- cluster.cluster_name.infra
parameters:
linux:
network:
interface:
ens3: ${_param:linux_single_interface}
host:
dnsO01:
address: ${ param:openstack_dns node0l address}
names:
-dns01
- dns01.${ param:cluster domain}
dns02:
address: ${ param:openstack_dns node02_address}
names:
- dns02
- dns02.${ param:cluster domain}
powerdns:
server:
enabled: true
bind:
address: ${ param:single_address}
port: 53
backend:
engine: sqglite
dbname: pdns.sqglite3
dbpath: /var/lib/powerdns
api:
enabled: true

©2025, Mirantis Inc. Page 192

Mirantis Cloud Platform Deployment Guide

key: ${ param:designate_pdns_api_key}

overwrite_supermasters: ${ param:powerdns_supermasters}

supermasters:
${ _param:powerdns_supermasters}
webserver:
enabled: true
address: ${ param:single_address}
port: ${ param:powerdns_webserver_port}

password: ${ param:powerdns_webserver_password}

axfr_ips:
- ${_param:openstack _control node0l1 address}
- ${_param:openstack _control node02_address}
- ${_param:openstack _control node03 address}
-127.0.0.1

Note

If you want to use the MySQL backend instead of the default SQLite one, modify the
backend section parameters accordingly and configure your metadata model as
described in Enable the MySQL backend for PowerDNS.

3. In init.yml, define the following parameters:

Example:

openstack _dns_node0Ol_address: 10.0.0.1
openstack _dns_node02_address: 10.0.0.2
powerdns_axfr_ips:
- ${_param:openstack _control node01l address}
- ${_param:openstack _control node02_address}
- ${_param:openstack _control node03 address}
-127.0.0.1
powerdns_supermasters:
- ip: ${_param:openstack control node0l1 address}
nameserver: nsl.example.org
account: master
- ip: ${_param:openstack control node02_address}
nameserver: ns2.example.org
account: master
- ip: ${_param:openstack control node03 address}
nameserver: ns3.example.org
account: master
powerdns_overwrite_supermasters: True
powerdns_webserver_password: gJ6n3gVaYP8eS
powerdns_webserver_port: 8081

©2025, Mirantis Inc.

Page 193

Mirantis Cloud Platform Deployment Guide

mysql_designate_password: password
keystone_designate_password: password
designate_service_host: ${_param:openstack_control_address}
designate_domain_id: 5186883b-91fb-4891-bd49-e6769234a8fc
desighate_mdns_address: 0.0.0.0
designate_mdns_port: 53
designate_pdns_api_key: VXK9cMIFL5Ae
designhate_pdns_api_endpoint: >
"http://${_param:openstack_dns node0l address}:${ param:powerdns_webserver port}"
designate_pool_manager_enabled: True
designate_pool_manager_periodic_sync_interval: '120'
designhate_pool_ns_records:
- hostname: 'nsl.example.org.'
priority: 10
- hosthame: 'ns2.example.org.’
priority: 20
- hostname: 'ns3.example.org.’
priority: 30
designate_pool_nameservers:
- host: ${ param:openstack _dns node01 address}
port: 53
- host: ${ param:openstack _dns node02 address}
port: 53
designate_pool_target_type: pdns4
designate_pool_target_masters:
- host: ${ param:openstack control node0O1 address}
port: ${ param:designate_mdns_port}
- host: ${_param:openstack_control_node02_address}
port: ${ param:designate_mdns_port}
- host: ${ param:openstack control node03 address}
port: ${ param:designate_mdns_port}
designate_pool_target_options:
host: ${ param:openstack _dns nodeOl address}
port: 53
api_token: ${_param:designate_pdns_api_key}
api_endpoint: ${ param:desighate_pdns_api_endpoint}
designate_version: ${ param:openstack version}

4. In control.yml, define the following parameters in the parameters section:

Example:

designate:
pool_manager:
enabled: ${ param:designate pool manager _enabled}
periodic_sync_interval: ${ param:designate_pool _manager periodic_sync_interval}
server:
backend:
pdns4:

©2025, Mirantis Inc. Page 194

Mirantis Cloud Platform Deployment Guide

api_token: ${ param:designate_pdns_api_key}
api_endpoint: ${ param:designate_pdns_api_endpoint}
mdns:
address: ${ param:designate_mdns_address}
port: ${ param:designate_mdns_port}
pools:
default:
description: 'test pool'
targets:
default:
description: 'test targetl'
defaultl:
type: ${ param:designate_pool_target type}
description: 'test target2'
masters: ${ param:designate_pool target masters}
options:
host: ${ param:openstack _dns node02_address}
port: 53
api_endpoint: >
"http://${ param:openstack_dns _node02 address}:
${ param:powerdns_webserver_port}"
api_token: ${ param:designate_pdns_api_key}

5. In classes/cluster/cluster_name/infra/kvm.yml, modify the classes and parameters sections.
Example:

* In the classes section:

classes:
- system.salt.control.cluster.openstack _dns_cluster

* In the parameters section, add the DNS parameters for VMs with the required location
of DNS VMs on the kvm nodes and the planned resource usage for them.

salt:
control:
openstack.dns:
cpu: 2
ram: 2048
disk_profile: small
net_profile: default
cluster:
internal:
node:
dnsO1:
provider: kvm01.${_param:cluster_domain}

©2025, Mirantis Inc. Page 195

Mirantis Cloud Platform Deployment Guide

dns02:
provider: kvm02.${ param:cluster domain}

6. In classes/cluster/cluster name/infra/config.yml, modify the classes and parameters
sections.

Example:

* In the classes section:

classes:
- system.reclass.storage.system.openstack_dns_cluster

* In the parameters section, add the DNS VMs. For example:

reclass:
storage:
node:
openstack _dns_nodeO1l:
params:
linux_system_codename: xenial
openstack _dns_node02:
params:
linux_system_codename: xenial

7. Commit and push the changes.

Once done, proceed to deploy the PowerDNS server service as described in Deploy a new
PowerDNS server for Designate.

©2025, Mirantis Inc. Page 196

Mirantis Cloud Platform Deployment Guide

Enable the MySQL backend for PowerDNS
You can use PowerDNS with the MySQL backend instead of the default SQLite one if required.

Warning

If you use PowerDNS in the slave mode, you must run MySQL with a storage engine that
supports transactions, for example, InnoDB that is the default storage engine for MySQL in
MCP.

Using a non-transaction storage engine may negatively affect your database after some
actions, such as failures in an incoming zone transfer.

For more information, see: PowerDNS documentation.

Note

While following the procedure below, replace ${node} with a short name of the required
node where applicable.

To enable the MySQL backend for PowerDNS:

1. Open your Reclass model Git repository.

2. Modify nodes/ generated/${full_host name}.yml, where ${full_host name} is the FQDN of
the particular node. Add the following classes and parameters:

classes:

- cluster.<cluster name>
- system.powerdns.server.single

parameters:

powerdns:

server:.

backend:
engine: mysq|
host: ${ param:cluster vip_address}
port: 3306
dbname: ${_param:mysql_powerdns_db _name}
user: ${_param:mysql_powerdns_db_name}
password: ${ param:mysql_powerdns_password}

©2025, Mirantis Inc. Page 197

https://doc.powerdns.com/authoritative/backends/generic-mysql.html

Mirantis Cloud Platform Deployment Guide

Substitute <cluster_name> with the appropriate value.

Warning

Do not override the cluster_vip_address parameter.

3. Create a classes/system/galera/server/database/powerdns_${node}.yml file and add the
databases to use with the MySQL backend:

parameters:
mysql:
server:
database:
powerdns_${node}:
encoding: utf8
users:

- name: ${ param:mysql_powerdns_user name_${node}}

password: ${ param:mysql_powerdns_user_password ${node}}
host: '%'

rights: all

- name: ${ param:mysql_powerdns_user name_${node}}

password: ${ param:mysql_powerdns_user_password ${node}}
host: ${ param:cluster_local address}
rights: all

4. Add the following class to classes/cluster/<cluster_name>/openstack/control.yml:

classes:
- system.galera.server.database.powerdns_${node}

5. Add the MySQL parameters for

Galera to
classes/cluster/<cluster_name>/openstack/init.yml. For example:

parameters:
_param:

mysql_powerdns_db_name_${node}: powerdns_${node}
mysql_powerdns_user name_${node}: pdns_slave _${node}
mysql_powerdns_user_password_${node}: niliX1wuf]JongiVu

6. Log in to the Salt Master node.
7. Refresh pillar information:

salt "*' saltutil.refresh_pillar

©2025, Mirantis Inc. Page 198

Mirantis Cloud Platform Deployment Guide

8. Apply the Galera states:

salt -C 'l@galera:master’ state.sls galera
9. Proceed to deploying PowerDNS as described in Deploy a new PowerDNS server for
Designate.

10 Optional. After you deploy PowerDNS:

* If you use MySQL InnoDB, add foreign key constraints to the tables. For details, see:
PowerDNS documentation.

* If you use MySQL replication, to support the NATIVE domains, set binlog_format to
MIXED or ROW to prevent differences in data between replicated servers. For details,
see: MySQL documentation.

©2025, Mirantis Inc. Page 199

https://doc.powerdns.com/authoritative/backends/generic-mysql.html
https://dev.mysql.com/doc/refman/5.7/en/binary-log-setting.html

Mirantis Cloud Platform Deployment Guide

Deploy a new PowerDNS server for Designate

After you configure the Reclass model for PowerDNS server as a backend for Designate, proceed

to deploying the PowerDNS server service as described below.

To deploy a PowerDNS server service:

1. Log in to the Salt Master node.
2. Configure basic operating system settings on the DNS nodes:

salt -C 'l@powerdns:server' state.sls linux,ntp,openssh
3. Apply the following state:

salt -C 'l@powerdns:server' state.sls powerdns

Once done, you can proceed to deploy Designate as described in Deploy Designate.

Seealso
* Deploy Designate
* BIND9 documentation
* PowerDNS documentation

* Plan the Domain Name System

©2025, Mirantis Inc.

Page 200

https://wiki.debian.org/Bind9
https://www.powerdns.com
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/network/dns.html

Mirantis Cloud Platform Deployment Guide

Install OpenStack services

Many of the OpenStack service states make changes to the databases upon deployment. To
ensure proper deployment and to prevent multiple simultaneous attempts to make these
changes, deploy a service states on a single node of the environment first. Then, you can deploy
the remaining nodes of this environment.

Keystone must be deployed before other services. Following the order of installation is
important, because many of the services have dependencies of the others being in place.

©2025, Mirantis Inc. Page 201

Mirantis Cloud Platform Deployment Guide

Deploy Keystone
To deploy Keystone:

1. Log in to the Salt Master node.

2. Set up the Keystone service:

salt -C 'l@keystone:server and *01*' state.sls keystone.server
salt -C 'l@keystone:server' state.sls keystone.server

3. Populate keystone services/tenants/admins:

salt -C 'l@keystone:client' state.sls keystone.client
salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; openstack service list"

Note

By default, the latest MCP deployments use rsync for fernet and credential keys rotation.
To configure rsync on the environments that use GlusterFS as a default rotation driver and
credential keys rotation driver, see MCP Operations Guide: Migrate from GlusterFS to
rsync for fernet and credential keys rotation.

©2025, Mirantis Inc. Page 202

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/migrate-from-glusterfs-to-rsync.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/migrate-from-glusterfs-to-rsync.html

Mirantis Cloud Platform Deployment Guide

Deploy Glance

The OpenStack Image service (Glance) provides a REST API for storing and managing virtual

machine images and snapshots.

To deploy Glance:

1. Install Glance and verify that GlusterFS clusters exist:

salt -C 'l@glance:server and *01*' state.sls glance.server
salt -C 'l@glance:server' state.sls glance.server

salt -C 'l@glance:client’ state.sls glance.client

salt -C 'l@glusterfs:client' state.sls glusterfs.client

2. Update Fernet tokens before doing request on the Keystone server. Otherwise, you will get

the following error: No encryption

run keystone-manage fernet_setup to bootstrap one:

salt -C 'l@keystone:server' state.sls keystone.server

keys found;

salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; glance image-list"

©2025, Mirantis Inc.

Page 203

Mirantis Cloud Platform Deployment Guide

Deploy Nova
To deploy the Nova:

1. Install Nova:

salt -C 'l@nova:controller and *01*' state.sls nova.controller

salt -C 'l@nova:controller' state.sls nova.controller

salt -C 'l@keystone:server' cd.run . /root/keystonercv3; nova --debug service-list"
salt -C 'l@keystone:server' cd.run . /root/keystonercv3; nova --debug list"

salt -C 'l@nova:client' state.sls nova.client

2. On one of the controller nodes, verify that the Nova services are enabled and running:

root@cfg01:~# ssh ctl01 "source keystonercv3; nova service-list"

©2025, Mirantis Inc. Page 204

Mirantis Cloud Platform Deployment Guide

Deploy Cinder
To deploy Cinder:

1. Install Cinder:

salt -C 'l@cinder:controller and *01*' state.sls cinder
salt -C 'l@cinder:controller' state.sls cinder

2. On one of the controller nodes, verify that the Cinder service is enabled and running:

salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; cinder list"

©2025, Mirantis Inc. Page 205

Mirantis Cloud Platform Deployment Guide

Deploy Neutron

To install Neutron:

salt -C 'l@neutron:server and *01*' state.sls neutron.server

salt -C 'l@neutron:server' state.sls neutron.server

salt -C 'l@neutron:gateway' state.sls neutron

salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; neutron agent-list"

Note

For installations with the OpenContrail setup, see Deploy OpenContrail manually.

Seealso
MCP Operations Guide: Configure Neutron OVS

©2025, Mirantis Inc. Page 206

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/configure-neutron.html

Mirantis Cloud Platform Deployment Guide

Deploy Horizon

To install Horizon:

salt -C 'l@horizon:server' state.sls horizon
salt -C 'l@nginx:server' state.sls nginx

©2025, Mirantis Inc.

Page 207

Mirantis Cloud Platform Deployment Guide

Deploy Heat
To deploy Heat:

1. Apply the following states:

salt -C 'l@heat:server and *01*' state.sls heat
salt -C 'l@heat:server' state.sls heat

2. On one of the controller nodes, verify that the Heat service is enabled and running:

salt -C 'l@keystone:server' cmd.run ". /root/keystonercv3; openstack stack list"

©2025, Mirantis Inc. Page 208

Mirantis Cloud Platform Deployment Guide

Deploy Tenant Telemetry

Tenant Telemetry collects metrics about the OpenStack resources and provides this data
through the APIs. This section describes how to deploy the Tenant Telemetry, which uses its own
backends, such as Gnocchi and Panko, on a new or existing MCP cluster.

Caution!

The deployment of Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is
supported starting from the Pike OpenStack release and does not support integration with
StackLight LMA. However, you can add the Gnocchi data source to Grafana to view the
Tenant Telemetry data.

Note

If you select Ceph as an aggregation metrics storage, a Ceph health warning
1 pools have many more objects per pg than average may appear due to Telemetry
writing a number of small files to Ceph. The possible solutions are as follows:

* Increase the amount of PGs per pool. This option is suitable only if concurrent access
is required together with request low latency.

* Suppress the warning by modifying mon pg warn max object skew depending on the
number of objects. For details, see Ceph documentation.

©2025, Mirantis Inc. Page 209

http://docs.ceph.com/docs/mimic/rados/configuration/pool-pg-config-ref/

Mirantis Cloud Platform Deployment Guide

Deploy Tenant Telemetry on a new cluster

Caution!

The deployment of Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is
supported starting from the Pike OpenStack release and does not support integration with
StackLight LMA. However, you can add the Gnocchi data source to Grafana to view the
Tenant Telemetry data.

Follow the procedure below to deploy Tenant Telemetry that uses its own back ends, such as
Gnocchi and Panko.

To deploy Tenant Telemetry on a new cluster:

1. Log in to the Salt Master node.

2. Set up the aggregation metrics storage for Gnocchi:

* For Ceph, verify that you have deployed Ceph as described in Deploy a Ceph cluster
and run the following commands:

salt -C "l@ceph:osd or I@ceph:osd or I@ceph:radosgw" saltutil.refresh_pillar

salt -C "l@ceph:mon:keyring:mon or I@ceph:common:keyring:admin" state.sls ceph.mon
salt -C "l@ceph:mon:keyring:mon or I@ceph:common:keyring:admin" mine.update

salt -C "l@ceph:mon" state.sls 'ceph.mon’

salt -C "l@ceph:setup" state.sls ceph.setup

salt -C "l@ceph:osd or |l@ceph:osd or I@ceph:radosgw" state.sls ceph.setup.keyring

* For the file backend based on GlusterFS, run the following commands:

salt -C "l@glusterfs:server" saltutil.refresh_pillar

salt -C "l@glusterfs:server" state.sls glusterfs.server.service

salt -C "l@glusterfs:server:role:primary" state.sls glusterfs.server.setup
salt -C "l@glusterfs:server" state.sls glusterfs

salt -C "l@glusterfs:client" saltutil.refresh_pillar

salt -C "l@glusterfs:client" state.sls glusterfs.client

3. Create users and databases for Panko and Gnocchi:

salt-call state.sls reclass.storage

salt -C 'l@salt:control' state.sls salt.control

salt -C 'l@keystone:client' state.sls keystone.client

salt -C 'l@keystone:server state.sls linux.system.package
salt -C 'l@galera:master’ state.sls galera

salt -C 'l@galera:slave' state.sls galera

salt prx* state.sls nginx

©2025, Mirantis Inc. Page 210

Mirantis Cloud Platform Deployment Guide

4, Provision the mdb nodes:

1. Apply basic states:

salt mdb* saltutil.refresh_pillar

salt mdb* saltutil.sync_all

salt mdb* state.sls linux.system

salt mdb* state.sls linux,ntp,openssh,salt.minion
salt mdb* system.reboot --async

2. Deploy basic services on mdb nodes:

salt mdb01* state.sls keepalived
salt mdb* state.sls keepalived
salt mdb* state.sls haproxy
salt mdb* state.sls memcached
salt mdb* state.sls nginx
salt mdb* state.sls apache
3. Install packages:
* For Ceph:
salt mdb* state.sls ceph.common,ceph.setup.keyring

e For GlusterfFsS:

salt mdb* state.sls glusterfs

5. Update the cluster nodes:

salt "*' saltutil.refresh_pillar
salt "*' state.sls linux.network.host

6. To use the Redis cluster as coordination backend and storage for Gnocchi, deploy Redis
master:

salt -C 'l@redis:cluster:role:master' state.sls redis
7. Deploy Redis on all servers:

salt -C 'l@redis:server' state.sls redis
8. Deploy Gnocchi:

salt -C 'l@gnocchi:server and *01*' state.sls gnocchi.server
salt -C 'l@gnocchi:server' state.sls gnocchi.server

©2025, Mirantis Inc. Page 211

Mirantis Cloud Platform Deployment Guide

9. Deploy Panko:

salt -C 'l@panko:server and *01*' state.sls panko
salt -C 'l@panko:server' state.sls panko

10 Deploy Ceilometer:

salt -C 'l@ceilometer:server and *01*' state.sls ceilometer
salt -C 'l@ceilometer:server' state.sls ceilometer
salt -C 'l@ceilometer:agent' state.sls ceilometer -b 1

11 Deploy Aodh:

salt -C 'l@aodh:server and *01*' state.sls aodh
salt -C 'l@aodh:server' state.sls aodh

©2025, Mirantis Inc.

Page 212

Mirantis Cloud Platform Deployment Guide

Deploy Tenant Telemetry on an existing cluster

Caution!

The deployment of Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is
supported starting from the Pike OpenStack release and does not support integration with
StackLight LMA. However, you can add the Gnocchi data source to Grafana to view the
Tenant Telemetry data.

If you have already deployed an MCP cluster with OpenStack Pike, StackLight LMA, and Ceph
(optionally), you can add the Tenant Telemetry as required.

©2025, Mirantis Inc. Page 213

Mirantis Cloud Platform Deployment Guide

Prepare the cluster deployment model

Before you deploy Tenant Telemetry on an existing MCP cluster, prepare your cluster
deployment model by making the corresponding changes in your Git project repository.

To prepare the deployment model:

1. Open your Git project repository.
2. Set up the aggregation metrics storage for Gnocchi:

* For the Ceph backend, define the Ceph users and pools:

1. In the classes/cluster/<cluster name>/ceph/setup.yml file, add the pools:

parameters:
ceph:
setup:
pool:
telemetry_pool:
pg_num: 512
pgp_num: 512
type: replicated
application: rgw
crush_rule: sata

2.In the classes/cluster/<cluster name>/openstack/init.yml
Telemetry user and pool:

parameters:

_param:
gnocchi_storage_user: gnocchi_user
gnocchi_storage pool: telemetry pool

3.In the classes/cluster/<cluster name>/ceph/common.yml
Telemetry user permissions:

parameters:
ceph:
common:
keyring:
gnocchi:
name: ${ param:gnocchi_storage_user}
caps:
mon: "allow r"
osd: "allow rwx pool=telemetry_pool"

file, specify the

file, define the

e For the file backend with GlusterFS, define the GlusterFS volume in the

classes/cluster/<cluster_name>/infra/glusterfs.yml file:

©2025, Mirantis Inc.

Page 214

Mirantis Cloud Platform Deployment Guide

classes:
- system.glusterfs.server.volume.gnocchi

Note

Mirantis recommends creating a separate LVM for the Gnocchi GlusterFS volume.
The LVM must contain a file system with a large number of inodes. Four million of
inodes allow keeping the metrics of 1000 Gnocchi resources with a medium
Gnocchi archive policy for two days maximum.

3. In the classes/cluster/<cluster_name>/infra/config/init.yml file, add the class with Telemetry
nodes definition:

classes:
- system.reclass.storage.system.openstack _telemetry cluster

4. In the classes/cluster/<cluster_name>/infra/config/nodes.yml file, add the Telemetry node
parameters:

parameters:
salt:
reclass:
storage:
node:
openstack_telemetry_nodeO1l:
params:
linux_system_codename: xenial
deploy_address: ${ param:openstack telemetry nodeOl deploy address}
redis_cluster_role: 'master’
ceilometer_create_gnocchi_resources: true
openstack_telemetry_node02:
params:
linux_system_codename: xenial
deploy_address: ${ param:openstack telemetry node02 deploy address}
redis_cluster_role: 'slave’
openstack_telemetry_node03:
params:
linux_system_codename: xenial
deploy_address: ${ param:openstack telemetry node03 deploy address}
redis_cluster_role: 'slave’

5. In the classes/cluster/<cluster_name>/infra/kvm.yml file, add the Telemetry VM definition:

©2025, Mirantis Inc. Page 215

Mirantis Cloud Platform Deployment Guide

classes:
- system.salt.control.cluster.openstack_telemetry cluster
parameters:
salt:
control:
cluster:
internal:
node:
mdbO1:
image: ${ param:salt_control_xenial_image}
mdb02:
image: ${ param:salt_control_xenial_image}
mdb03:
image: ${ param:salt_control_xenial_image}
virt:
nic:
##Telemetry
mdb:
ethl:
bridge: br-mgm
etho:
bridge: br-ctl

6. Define the Panko, Gnocchi, Ceilometer, and Aodh secrets in
classes/cluster/<cluster_name>/infra/secrets.yml:

parameters:
_param:

mysql_gnocchi_password_generated: <GNOCCHI MYSQL SECRET>
mysql_panko_password_generated: <PANKO MYSQL SECRET>
mysql_aodh_password_generated: <AODH MYSQL SECRET>
keystone_gnocchi_password_generated: <GNOCCHI KEYSTONE SECRET>
keystone_panko_password_generated: <PANKO KEYSTONE SECRET>
keystone_aodh_password_generated: <AODH KEYSTONE SECRET>
keystone_ceilometer_password_generated: <CEILOMETER KEYSTONE SECRET>
openstack telemetry _redis_password generated: <TELEMETRY REDIS SECRET>
aodh_memcache_secret_key generated: <AODH MEMCACHE SECRET>
ceilometer_memcache_secret_key generated: <CEILOMETER MEMCACHE SECRET>
panko_memcache_secret_key generated: <PANKO MEMCACHE SECRET>
gnocchi_memcache_secret_key generated: <GNOCCHI MEMCACHE SECRET>
tenant_telemetry_keepalived_vip_password: <TENANT TELEMETRY KEEPALIVED SECRET>

7. In the classes/cluster/<cluster_name>/openstack/init.yml file, define the global parameters
and linux:network:host:

parameters:
_param:
aodh_service_host: ${ param:openstack telemetry address}

©2025, Mirantis Inc. Page 216

Mirantis Cloud Platform Deployment Guide

ceilometer_service_host: ${_param:openstack_telemetry_address}
panko_service_host: ${_param:openstack_telemetry_address}

gnocchi_service_host: ${ param:openstack telemetry address}

For Queens openstack set gnocchi version to 4.2, for Pike to 4.0

gnocchi_version: 4.2

panko_version: ${_param:openstack_version}

mysql_gnocchi_password: ${_param:mysql_gnocchi_password_generated}
mysql_panko_password: ${ param:mysql_panko_password_generated}
mysql_aodh_password: ${_param:mysql_aodh_password_generated}
keystone_gnocchi_password: ${_param:keystone_gnocchi_password_generated}
keystone_panko_password: ${_param:keystone _panko _password generated}
keystone_aodh_password: ${_param:keystone_aodh_password_generated}
keystone_ceilometer_password: ${_param:keystone_ceilometer_password_generated}
ceilometer_agent_default_polling_interval: 15
ceilometer_agent_default_polling_meters:

R

openstack_telemetry_redis_password: ${_param:openstack_telemetry_redis_password_generated}
aodh_memcache_secret_key: ${_param:aodh_memcache_secret_key generated}
ceilometer_memcache_secret_key: ${_param:ceilometer memcache_secret key generated}
panko_memcache_secret_key: ${_param:panko_memcache_secret_key_generated}
gnocchi_memcache_secret_key: ${_param:gnocchi_memcache_secret_key generated}

openstack telemetry

openstack_telemetry_address: 172.30.121.65
openstack_telemetry_node0Ol_deploy address: 10.160.252.66
openstack_telemetry_node02_deploy_address: 10.160.252.67
openstack_telemetry_node03_deploy address: 10.160.252.68
openstack_telemetry node0Ol_address: 172.30.121.66
openstack_telemetry_node02_address: 172.30.121.67
openstack_telemetry_node03_address: 172.30.121.68

openstack_telemetry_hostname: mdb

openstack_telemetry_node0l1l_hostname: mdb0O1
openstack_telemetry_node02_hostname: mdb02
openstack_telemetry_node03_hostname: mdb03

linux:
network:
host:

mdb:
address: ${_param:openstack_telemetry_address}
names:
- ${_param:openstack_telemetry_hostname}
- ${_param:openstack_telemetry_hostname}.${_param:cluster_domain}

mdbO1:
address: ${_param:openstack_telemetry_nodeOl_address}

©2025, Mirantis Inc. Page 217

Mirantis Cloud Platform Deployment Guide

names:

- ${ param:openstack telemetry node0l hostname}

- ${ param:openstack telemetry node0l_hostname}.${ param:cluster domain}
mdb02:

address: ${ param:openstack telemetry node02 address}

names:

- ${ param:openstack telemetry node02_hostname}

- ${ param:openstack telemetry_node02_hostname}.${ param:cluster domain}
mdb03:

address: ${ param:openstack telemetry node03 address}

names:

- ${ param:openstack telemetry node03 hostname}

- ${ param:openstack telemetry_node03 hostname}.${ param:cluster domain}

8. Add endpoints:

1. In the classes/cluster/<cluster name>/openstack/control/init.yml file, verify that the
Panko, Gnocchi, and Aodh endpoints are present:

classes:

- system.keystone.client.service.panko

- system.keystone.client.service.aodh

- system.keystone.client.service.gnocchi

- system.keystone.client.service.ceilometer

parameters:
_param:
aodh_service_protocol: ${_param:cluster_internal_protocol}
gnocchi_service_protocol: ${ param:cluster_internal_protocol}
panko_service_protocol: ${_param:cluster_internal_protocol}

2.In the classes/cluster/<cluster name>/openstack/proxy.yml file, add the Gnocchi,
Aodh, and Panko public endpoints:

classes:

- system.nginx.server.proxy.openstack.gnocchi
- system.nginx.server.proxy.openstack.aodh

- system.nginx.server.proxy.openstack.panko

3. If HTTPS is enabled on the OpenStack internal endpoints, add the following parameters
to classes/cluster/<cluster name>/openstack/proxy.ymil:

parameters:
_param:
nginx_proxy_openstack_aodh_protocol: 'https’
nginx_proxy_openstack_panko_protocol: 'https'
nginx_proxy_openstack_gnocchi_protocol: 'https’

©2025, Mirantis Inc. Page 218

Mirantis Cloud Platform Deployment Guide

9. In the classes/cluster/<cluster name>/openstack/database/master.yml file, verify that the
classes for the Panko, Gnocchi, Aodh databases are present:

classes:

- system.galera.server.database.panko

- system.galera.server.database.aodh

- system.galera.server.database.gnocchi

10 Change the configuration of the OpenStack controller nodes:

1. In the classes/cluster/<cluster nhame>/openstack/control.yml file, add the Panko client
package to test the OpenStack event CLI command. Additionally, verify that the file
includes the ceilometer.client class.

classes:

#- system.ceilometer.server.backend.influxdb

#- system.heka.ceilometer_collector.single

#- system.aodh.server.cluster

#- system.ceilometer.server.cluster

- system.keystone.server.notification.messagingv2
- system.glance.control.notification.messagingv2
- system.nova.control.notification.messagingv2

- system.neutron.control.notification.messagingv2
- system.ceilometer.client.nova_control

- system.cinder.control.notification.messagingv2

- system.cinder.volume.notification.messagingv2
- system.heat.server.notification.messagingv2

parameters:
linux:
system:
package:
python-pankoclient:

2. In the classes/cluster/<cluster name>/openstack/control/init.yml file, add the following
classes:

classes:
- system.gnocchi.client
- system.gnocchi.client.vl.archive policy.default

3. In the classes/cluster/<cluster_name>/stacklight/telemetry.yml file, remove InfluxDB
from the mdb* node definition:

classes:
#- system.haproxy.proxy.listen.stacklight.influxdb_relay
#- system.influxdb.relay.cluster

©2025, Mirantis Inc. Page 219

Mirantis Cloud Platform Deployment Guide

#- system.influxdb.server.single
#- system.influxdb.database.ceilometer

11 Change the configuration of compute nodes:

1. Open the classes/cluster/<cluster name>/openstack/compute/init.yml file for editing.

2. Verify that ceilometer.agent classes are present on the compute nodes:

classes:

- system.ceilometer.agent.telemetry.cluster

- system.ceilometer.agent.polling.default

- system.nova.compute.notification.messagingv2

3. If SSL in libvirt is enabled, set the following parameter:

parameters:
_param:
ceilometer_agent_ssl_enabled: True

12 In the classes/cluster/<cluster name>/openstack/networking/telemetry.yml file, define the
. hetworking schema for the mdb VMs:

Networking template for Telemetry nodes
parameters:
linux:
network:
interface:
ens2: ${ param:linux_deploy_interface}
ens3: ${ param:linux_single_interface}

13 Define the Telemetry node YAML file:

1. Open the classes/cluster/<cluster_name>/openstack/telemetry.yml file for editing.

2. Specify the classes and parameters depending on the aggregation metrics storage:

* For Ceph, specify:

classes:

- system.ceph.common.cluster

- system.gnocchi.common.storage.ceph

- Ccluster.<cluster_name>.ceph.common

parameters:

_param:

gnocchi_storage_ceph_pool: ${ param:gnocchi_storage _pool}
gnocchi_storage_ceph_user: ${ param:gnocchi_storage_user}

©2025, Mirantis Inc. Page 220

Mirantis Cloud Platform Deployment Guide

* For the file backend with GlusterFS, specify:

classes:

- system.linux.system.repo.mcp.apt_mirantis.glusterfs
- system.glusterfs.client.cluster

- system.glusterfs.client.volume.gnocchi
parameters:

_param:

gnocchi_glusterfs_service_host: ${ param:glusterfs_service_host}

3. Specify the following classes and parameters:

classes
 system keepalived.cluster.instance openstack telemetry_vip
system memcached.server.single
- system apache server.single
system apache server site.aodh
- system apache server site gnocchi
system apache server site.panko
- service redis server single
- system gnocchl.common.cluster
systemgnocchi server.cluster
- system gnocchi common.storage Incoming.redis
system gnocchi.common. coordination.redis
- system cellometer.server.telemetry. cluster
system ceilometer server.coordination.redis
- system aodh.server.cluster
- system aodh server coordination redis
system.panko server cluster
- system cellometer server.backend.gnocehi
cluster. <cluster_name> infra
 cluster <cluster_name> openstack.networking.telemetry
parameters:
“param:
cluster vip_address: ${_param:openstack_telemetry_address}
interface: ens3
address: ${_param:cluster vip_address}
_param:tenant_telemetry_keepalived_vip_password}
cluster_local address: ${_param:single_address}
cluster_node01_hostname: ${_param:openstack telemetry node0l_ostname}
cluster node01 address: ${_param:openstack telemetry node01 address)
cluster_node02_hostname: ${_param:openstack telemetry noded2_hostname}
cluster_node02_address: ${_param:openstack_telemetry node02_address}
cluster_node03_hostname: ${_param:openstack_telemetry noded3 hostname}
cluster_node03_address: ${_param:openstack_telemetry node03_address}
tinel_fode01 _address: ${_param:openstack_telemetry node0l_address}

upport multi-u any usemamé can be Used in url
metry_redis_url: ' Ctelemetry_reds |
gnocchi_coordination_url: ${_param:openstack telerietry_redis_url}

gnocchi_storage incoming_radis_url: ${_pararnopenstack_telemetry_redis_url}
haproxy_https. check_ options:

_paramiredis sentinel_node01_address) 263797db=0&sentinel=master_1&sentinel fallback=${_param:redis_sentinel node02_address}:263795sentinel fallback=$ {_param:redis._sentinel node03_address}:26379

heck_params: check-ss! verify none
check_params: check-ss! verify none
‘eck_params: check inter 10s fastinter 2s downinter 3s rise 3 fall 3 check-ss! verify none

authority: *S{_param:salt_minion_ca_authority}"
key file: ${_param-openstack api cert key file}
cert_file: ${_param:openstack_api_cert_cert_file}
chain_file: ${_param:openstack_api_cert_all_file}

el
role: ${_param:redis_cluster_role)

host: ${_param:cluster_node01_address}
port: 637
sentinel
address: ${_param:single_address}
apache:
modules
wsgi
gnocchi
‘common:
database:
host: ${_param:openstack_database_address)

ssl
‘enabled: true

server.
identity.
protocol: ${_param:cluster_internal_protocol)
pkgs:
% T0DO: move python-memcache installation to formula

- gnocchi-api

- gnocchi-metricd

- python-memcache
panko:

identity.
protocol: ${_param:cluster_internal_protocol)
tabase:

ss
enabled: true
aodh:
coordination_backend:
_param:openstack_telemetry_redis_url}
identity
host: ${_param:openstack_control address}
ceilometer:
coordination_backend:
url: ${_param:openstack_telemetry_redis_url}
identit
host: ${_param:openstack_control address)
haproxy:
proxy:
listen:
panko_api
type: None
options: ${_param:haproxy_https_check_options)
gnocchi_api

None

options: ${_param:haproxy_https_check_options)
aodh-api

type: None

options: ${_param:haproxy_https_check options}

Once done, proceed to Deploy Tenant Telemetry.

©2025, Mirantis Inc. Page 221

Mirantis Cloud Platform Deployment Guide

Deploy Tenant Telemetry

Once you have performed the steps described in Prepare the cluster deployment model, deploy
Tenant Telemetry on an existing MCP cluster as described below.

To deploy Tenant Telemetry on an existing MCP cluster:

1. Log in to the Salt Master node.

2. Depending on the type of the aggregation metrics storage, select from the following
options:

* For Ceph, deploy the newly created users and pools:

salt -C "l@ceph:osd or I@ceph:osd or I@ceph:radosgw" saltutil.refresh_pillar

salt -C "l@ceph:mon:keyring:mon or I@ceph:common:keyring:admin" state.sls ceph.mon
salt -C "l@ceph:mon:keyring:mon or I@ceph:common:keyring:admin" mine.update

salt -C "l@ceph:mon" state.sls 'ceph.mon’

salt -C "l@ceph:setup" state.sls ceph.setup

salt -C "l@ceph:osd or I@ceph:osd or I@ceph:radosgw" state.sls ceph.setup.keyring

* For the file backend with GlusterFS, deploy the Gnocchi GlusterFS configuration:

salt -C "l@glusterfs:server" saltutil.refresh_pillar
salt -C "l@glusterfs:server" state.sls glusterfs

3. Run the following commands to generate definitions under
/srv/salt/reclass/nodes/_generated:

salt-call saltutil.refresh_pillar
salt-call state.sls reclass.storage

4. Verify that the following files were created:

Is -1 /srv/salt/reclass/nodes/ generated | grep mdb
mdb0l.domain.name
mdb02.domain.name
mdb03.domain.name

5. Create the mdb VMs:

salt -C 'l@salt:control' saltutil.refresh_pillar
salt -C 'l@salt:control' state.sls salt.control

6. Verify that the mdb nodes were successfully registered on the Salt Master node:

salt-key -L | grep mdb
mdb0l.domain.name
mdb02.domain.name
mdb03.domain.name

©2025, Mirantis Inc. Page 222

Mirantis Cloud Platform Deployment Guide

7. Create endpoints:

1. Create additional endpoints for Panko and Gnocchi and update the existing Ceilometer
and Aodh endpoints, if any:

salt -C 'l@keystone:client' saltutil.refresh_pillar
salt -C 'l@keystone:client' state.sls keystone.client

2. Verify the created endpoints:

salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service ceilometer'
salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service aodh'

salt -C 'l@keystone:client' cmnd.run '. /root/keystonercv3 ; openstack endpoint list --service panko'

salt -C 'l@keystone:client' cmd.run '. /root/keystonercv3 ; openstack endpoint list --service gnocchi'

3. Optional. Install the Panko client if you have defined it in the cluster model:

salt -C 'l@keystone:server' saltutil.refresh_pillar
salt -C 'l@keystone:server' state.sls linux.system.package

8. Create databases:

1. Create databases for Panko and Gnocchi:

salt -C 'l@galera:master or I@galera:slave' saltutil.refresh_pillar
salt -C 'l@galera:master' state.sls galera
salt -C 'l@galera:slave' state.sls galera

2. Verify that the databases were successfully created:

salt -C 'l@galera:master' cmd.run 'mysql --defaults-extra-file=/etc/mysql/debian.cnf -e "show databases;""
salt -C 'l@galera:master' cmd.run 'mysql --defaults-extra-file=/etc/mysql/debian.cnf -e "select User from mysql.user;"'

9. Update the NGINX configuration on the prx nodes:

salt prx* saltutil.refresh_pillar
salt prx* state.sls nginx

10 Disable the Ceilometer and Aodh services deployed on the ctl nodes:

for service in aodh-evaluator aodh-listener aodh-notifier \
ceilometer-agent-central ceilometer-agent-notification \
ceilometer_collector

do

salt ctl* service.stop $service

salt ctl* service.disable $service

done

©2025, Mirantis Inc. Page 223

Mirantis Cloud Platform Deployment Guide

11 Provision the mdb nodes:
1. Apply the basic states for the mdb nodes:

salt mdb* saltutil.refresh_pillar

salt mdb* saltutil.sync_all

salt mdb* state.sls linux.system

salt-call state.sls salt.minion.ca

salt mdb* state.sls linux,ntp,openssh,salt.minion
salt mdb* system.reboot --async

2. Install basic services on the mdb nodes:

salt mdb01* state.sls keepalived
salt mdb* state.sls keepalived
salt mdb* state.sls haproxy

salt mdb* state.sls memcached
salt mdb* state.sls apache

3. Install packages depending on the aggregation metrics storage:

* For Ceph:

salt mdb* state.sls ceph.common,ceph.setup.keyring

 For the file backend with GlusterFS:

salt mdb* state.sls glusterfs

4. Install the Redis, Gnocchi, Panko, Ceilometer, and Aodh services on mdb nodes:

salt -C 'l@redis:cluster:role:master' state.sls redis

salt -C 'l@redis:server' state.sls redis

salt -C 'l@gnocchi:server:role:primary' state.sls gnocchi
salt -C 'l@gnocchi:server' state.sls gnocchi

salt -C 'l@gnocchi:client' state.sls gnocchi.client -b 1
salt -C 'l@panko:server:role:primary' state.sls panko
salt -C 'l@panko:server' state.sls panko

salt -C 'l@ceilometer:server:role:primary' state.sls ceilometer
salt -C 'l@ceilometer:server' state.sls ceilometer

salt -C 'l@aodh:server:role:primary' state.sls aodh

salt -C 'l@aodh:server' state.sls aodh

5. Update the cluster nodes:

1. Verify that the mdb nodes were added to /etc/hosts on every node:

©2025, Mirantis Inc. Page 224

Mirantis Cloud Platform Deployment Guide

salt *' saltutil.refresh_pillar
salt "*' state.sls linux.network.host

2. For Ceph, run:

salt -C 'l@ceph:common and not mon*' state.sls ceph.setup.keyring

6. Verify that the Ceilometer agent is deployed and up to date:

salt -C 'l@ceilometer:agent' state.sls salt.minion
salt -C 'l@ceilometer:agent' state.sls ceilometer

7. Apply the configuration for Nova messaging notifications on the OpenStack controller
nodes:

salt -C 'l@nova:controller' state.sls nova.controller -b 1

8. Update the StackLight LMA configuration:

salt mdb* state.sls telegraf

salt mdb* state.sls fluentd

salt "*' state.sls salt.minion.grains

salt "*' saltutil.refresh_modules

salt '"*' mine.update

salt -C 'l@docker:swarm and I@prometheus:server' state.sls prometheus
salt -C 'l@sphinx:server' state.sls sphinx

12 Verify Tenant Telemetry:

Note

Metrics will be collected for the newly created resources. Therefore, launch an
instance or create a volume before executing the commands below.

1. Verify that metrics are available:
salt ctl01* cmd.run '. /root/keystonercv3 ; openstack metric list --limit 50'

2. If you have installed the Panko client on the ctl nodes, verify that events are available:
salt ctlO1* cmmd.run '. /root/keystonercv3 ; openstack event list --limit 20'

3. Verify that the Aodh endpoint is available:

©2025, Mirantis Inc. Page 225

Mirantis Cloud Platform Deployment Guide

salt ctl01* cmd.run '. /root/keystonercv3 ; openstack --debug alarm list'

The output will not contain any alarm because no alarm was created yet.

4. For Ceph, verify that metrics are saved to the Ceph pool (telemtry pool for the cloud):

salt cmn01* cmd.run 'rados df'

Seealso

* MCP Reference Architecture: Tenant Telemetry
* MCP Operations Guide: Enable the Gnocchi archive policies in Tenant Telemetry

* MCP Operations Guide: Add the Gnocchi data source to Grafana

©2025, Mirantis Inc. Page 226

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/tenant-telemetry.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/telemetry-operations/telemetry-arch-policies.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/use-grafana/add-gnocchi-data-source-to-grafana.html

Mirantis Cloud Platform Deployment Guide

Deploy Designate

Designate supports underlying DNS servers, such as BIND9 and PowerDNS. You can use either a
new or an existing DNS server as a backend for Designate. By default, Designate is deployed on
three OpenStack API VMs of the VCP nodes.

©2025, Mirantis Inc. Page 227

Mirantis Cloud Platform Deployment Guide

Prepare a deployment model for the Designate deployment

Before you deploy Designate with a new or existing BIND9 or PowerDNS server as a backend,
prepare your cluster deployment model by making corresponding changes in your Git project
repository.

To prepare a deployment model for the Designate deployment:

1.

6.
7.

Verify that you have configured and deployed a DNS server as a backend for Designate as

described in Deploy a DNS backend for Designate.

. Open the classes/cluster/<cluster nhame>/openstack/ directory in your

repository.

. In control_init.yml, add the following parameter in the classes section:

classes:
- system.keystone.client.service.desighate

. In control.yml, add the following parameter in the classes section:

classes:
- system.designate.server.cluster

. In database.yml, add the following parameter in the classes section:

classes:
- system.galera.server.database.designate

Add your changes to a new commit.

Commit and push the changes.

Once done, proceed to Install Designate.

Git project

©2025, Mirantis Inc.

Page 228

Mirantis Cloud Platform Deployment Guide

Install Designate
This section describes how to install Designate on a new or existing MCP cluster.

Before you proceed to installing Designate:

1. Configure and deploy a DNS backend for Designate as described in Deploy a DNS backend
for Designate.

2. Prepare your cluster model for the Designate deployment as described in Prepare a
deployment model for the Designate deployment.

To install Designate on a new MCP cluster:

1. Log in to the Salt Master node.
2. Apply the following states:

salt -C 'l@designate:server and *01*' state.sls designate.server
salt -C 'l@designate:server' state.sls designate

To install Designate on an already deployed MCP cluster:

1. Log in to the Salt Master node.
2. Refresh Salt pillars:

salt "*' saltutil.refresh_pillar

3. Create databases for Designate by applying the mysql state:

salt -C 'l@galera:master' state.sls galera

4. Create the HAProxy configuration for Designate:
salt -C 'l@haproxy:proxy' state.sls haproxy

5. Create endpoints for Designate in Keystone:

salt -C 'l@keystone:client' state.sls keystone.client
6. Apply the designate states:

salt -C 'l@designate:server and *01*' state.sls designate.server
salt -C 'l@designate:server' state.sls designate

7. Verify that the Designate services are up and running:

salt -C 'l@designate:server' cmd.run . /root/keystonercv3; openstack dns service list"

Example of the system response extract:

©2025, Mirantis Inc. Page 229

Mirantis Cloud Platform Deployment Guide

ctl02.virtual-mcp-ocata-ovs.local:

+ + + + + + +
| id |hostname |service_name |status |stats |capabilities |
+ + + + + + +

| 72df3c63-ed26-... | ctl03 | worker [UP |- |- |
| c3d425bb-131f-... | ctlO3 |central |UP |- |- |
| laf4c4ef-57fb-... | ctlO3 | producer |UP |-
| 75ac49bc-112c¢-... | ctlO3 | api |UP |-

| ee0f24cd-0d7a-... | ctl0O3 | mdns |UP |-
| 680902ef-380a-... | ctl02 | worker |UP |- |- |
| f09dca51-c4ab-... | ctl02 | producer |UP |- |- |
| 26e09523-0140-... | ctl0O1 | producer |UP |-

| 18ae9elf-7248-... | ctl01 | worker |UP |-

| e96dffcl-dab2-... | ctl01 |central |UP |- |- |

| 3859f1e7-24¢0-... | ctlO1 | api [UP |- |- |

| 18ee47a4-8e38-... | ctl01 | mdns [UP |- |- |

| 4c807478-f545-... | ctl02 | api [UP |- |- |

| b66305e3-a75f-... | ctl02 |central |UP |- |- |

| 3c¢0d2310-d852-... | ctl02 | mdns |UP |- |- |

+ + + + + + +
Seealso

Designate operations

Seealso

* Deploy a DNS backend for Designate
* Plan the Domain Name System

* Designate operations

©2025, Mirantis Inc. Page 230

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/designate.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/network/dns.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/designate.html

Mirantis Cloud Platform Deployment Guide

Deploy Barbican

Barbican is an OpenStack service that provides a REST API for secured storage as well as for
provisioning and managing of secrets such as passwords, encryption keys, and X.509
certificates.

Barbican requires a backend to store secret data in its database. If you have an existing Dogtag
backend, deploy and configure Barbican with it as described in Deploy Barbican with the Dogtag
backend. Otherwise, deploy a new Dogtag backend as described in Deploy Dogtag. For testing
purposes, you can use the simple_crypto backend.

Note

Due to a limitation, unshelving of an instance and booting from a snapshot require manual
intervention when integration between Nova and Barbican is enabled and instances are
only allowed to boot from signed Glance images. Both shelve and snapshot operations in
Nova create an image in Glance. You must manually sign this image to enable Nova to
boot an instance from this snapshot or to unshelve an instance. Nova does not
automatically sign the snapshot images it creates.

©2025, Mirantis Inc. Page 231

Mirantis Cloud Platform Deployment Guide

Deploy Dogtag

Dogtag is one of the Barbican plugins that represents a backend for storing symmetric keys, for
example, for volume encryption, as well as passwords, and X.509 certificates.

To deploy the Dogtag backend for Barbican:

1. Open the classes/cluster/<cluster name>/ directory of your Git project repository.

2. In openstack/control.yml, add the Dogtag class and specify the required parameters. For
example:

classes:
- system.dogtag.server.cluster

parameters:
_param:
dogtag_master_host: ${_param:openstack_control_node01_hostname}.${_param:cluster_domain}
haproxy _dogtag_bind_port: 8444
cluster_dogtag_port: 8443
Dogtag listens on 8443 but there is no way to bind it to a
Specific IP, as in this setup Dogtag is installed on ctl nodes
Change port on haproxy side to avoid binding conflict.
haproxy_dogtag_bind_port: 8444
cluster_dogtag_port: 8443
dogtag_master_host: ctl01.${linux:system:domain}
dogtag_pki_admin_password: workshop
dogtag_pki_client_database_password: workshop
dogtag_pki_client_pkcsl2_password: workshop
dogtag_pki_ds_password: workshop
dogtag_pki_token_password: workshop
dogtag_pki_security_domain_password: workshop
dogtag_pki_clone_pkcs1l2_password: workshop
dogtag:
server:
Idap_hostname: ${linux:network:fqdn}
Idap_dn_password: workshop
Idap_admin_password: workshop
export_pem_file_path: /etc/dogtag/kra_admin_cert.pem

3.1n classes/cluster/<cluster_name>/infra/config/init.yml, add the
- system.salt.master.formula.pkg.dogtag class to the classes section.

For example:

classes:
- system.salt.master.formula.pkg.dogtag

4.1In classes/cluster/<cluster name>/infra/config/nodes.yml, specify the
dogtag_cluster_role: master parameter in the openstack control node0l section, and the

©2025, Mirantis Inc. Page 232

Mirantis Cloud Platform Deployment Guide

dogtag cluster role: slave parameter in the openstack control node02 and

openstack_control_node03 sections.

For example:

node:
openstack_control_nodeO1:
classes:
- service.galera.master.cluster
- service.dogtag.server.cluster.master
params:
mysql_cluster_role: master
linux_system_codename: xenial
dogtag_cluster_role: master
openstack_control_node02:
classes:
- service.galera.slave.cluster
- service.dogtag.server.cluster.slave
params:
mysql_cluster_role: slave
linux_system_codename: xenial
dogtag_cluster_role: slave
openstack_control_node03:
classes:
- service.galera.slave.cluster
- service.dogtag.server.cluster.slave
params:
mysql_cluster_role: slave
linux_system_codename: xenial
dogtag_cluster_role: slave

5. Commit and push the changes to the project Git repository.

6. Log in to the Salt Master node.

7. Update your Salt formulas at the system level:

1. Change the directory to /srv/salt/reclass.
2. Run the git pull origin master command.

3. Run the salt-call state.sls salt.master command.
8. Apply the following states:

salt -C 'l@salt:master' state.sls salt,reclass

salt -C 'l@dogtag:server and *01*' state.sls dogtag.server
salt -C 'l@dogtag:server' state.sls dogtag.server

salt -C 'l@haproxy:proxy' state.sls haproxy

9. Proceed to Deploy Barbican with the Dogtag backend.

©2025, Mirantis Inc.

Page 233

Mirantis Cloud Platform Deployment Guide

Note

If the dogtag:export pem file path variable is defined, the system imports
kra admin certificate to the defined .pem file and to the Salt Mine dogtag _admin_cert
variable. After that, Barbican and other components can use kra admin certificate.

Seealso

Dogtag OpenStack documentation

©2025, Mirantis Inc. Page 234

https://developer.openstack.org/api-guide/key-manager/dogtag_setup.html

Mirantis Cloud Platform Deployment Guide

Deploy Barbican with the Dogtag backend

You can deploy and configure Barbican to work with the private Key Recovery Agent (KRA)
Dogtag backend.

Before you proceed with the deployment, make sure that you have a running Dogtag backend. If
you do not have a Dogtag backend yet, deploy it as described in Deploy Dogtag.

To deploy Barbican with the Dogtag backend:

1. Open the classes/cluster/<cluster name>/ directory of your Git project repository.
2. In infra/config/init.yml, add the following class:

classes:
- system.keystone.client.service.barbican

3. In openstack/control.yml, modify the classes and parameters sections:

classes:

- system.apache.server.site.barbican

- system.galera.server.database.barbican
- system.barbican.server.cluster

- service.barbican.server.plugin.dogtag

parameters:
_param:
apache_barbican_api_address: ${ param:cluster_local address}
apache_barbican_api_host: ${ param:single_address}
apache_barbican_ssl: ${ param:nginx_proxy ssl}
barbican_dogtag nss_password: workshop
barbican_dogtag host: ${ param:cluster vip_address}

barbican:
server:
enabled: true
dogtag admin_cert:
engine: mine
minion: ${ param:dogtag_master_host}
ks_notifications_enable: True
store:
software:
store_plugin: dogtag _crypto
global_default: True
plugin:
dogtag:
port: ${ param:haproxy dogtag bind_port}
nova:
controller:
barbican:

©2025, Mirantis Inc. Page 235

Mirantis Cloud Platform Deployment Guide

enabled: ${ param:barbican_integration_enabled}

cinder:
controller:
barbican:
enabled: ${ param:barbican_integration_enabled}
glance:
server:
barbican:

enabled: ${ param:barbican_integration_enabled}

4. In openstack/init.yml, modify the parameters section. For example:

parameters:
_param:

barbican_service _protocol: ${ param:cluster_internal_protocol}
barbican_service_host: ${ param:openstack control _address}
barbican_version: ${ param:openstack version}
mysql_barbican_password: workshop
keystone_barbican_password: workshop
barbican_dogtag_host: "dogtag.example.com"
barbican_dogtag nss_password: workshop
barbican_integration_enabled: true

5. In openstack/proxy.yml, add the following class:

classes:
- system.nginx.server.proxy.openstack.barbican

6. Optional. Enable image verification:

1. In openstack/compute/init.yml, add the following parameters:

parameters:
_param:
nova:
compute:
barbican:
enabled: ${ param:barbican_integration_enabled}

2. In openstack/control.yml, add the following parameters:

parameters:
_param:
nova:
controller:

©2025, Mirantis Inc.

Page 236

Mirantis Cloud Platform Deployment Guide

barbican:
enabled: ${ param:barbican_integration_enabled}

Note

This configuration changes the requirement to the Glance image upload procedure.
All glance images will have to be updated with signature information. For details, see:
OpenStack Nova and OpenStack Glance documentation.

7. Optional. In openstack/control.yml, enable volume encryption supported by the key
manager:

parameters:
_param:
cinder:
volume:
barbican:
enabled: ${ param:barbican_integration_enabled}

8. Optional. In init.yml, add the following parameters if you plan to use a self-signed certificate
managed by Salt:

parameters:
_param:
salt:
minion:
trusted_ca_minions:
- cfg01l

9. Distribute the Dogtag KRA certificate from the Dogtag node to the Barbican nodes. Select
from the following options (engines):

* Define the KRA admin certificate manually in pillar by editing the
infra/openstack/control.yml file:

barbican:
server:
dogtag_admin_cert:
engine: manual
key: |
<key data>

©2025, Mirantis Inc. Page 237

https://docs.openstack.org/nova/latest/user/certificate-validation.html
https://docs.openstack.org/glance/pike/user/signature.html

Mirantis Cloud Platform Deployment Guide

* Receive the Dogtag certificate from Salt Mine. The Dogtag formula sends the KRA
certificate to the dogtag admin cert Mine function. Add the following to
infra/openstack/control.yml:

barbican:
server:
dogtag admin_cert:
engine: mine
minion: <dogtag_minion_node_name>

* If some additional steps were applied to install the KRA certificate and these steps are
out of scope of the Barbican formula, the formula has the noop engine to perform no
operations. If the noop engine is defined in infra/openstack/control.yml, the Barbican
formula does nothing to install the KRA admin certificate.

barbican:
server:
dogtag_admin_cert:
engine: noop

In this case, manually populate the Dogtag KRA certificate in
/etc/barbican/kra_admin_cert.pem on the Barbican nodes.

10 Commit and push the changes to the project Git repository.
11 Log in to the Salt Master node.

12 Update your Salt formulas at the system level:

1. Change the directory to /srv/salt/reclass.
2. Run the git pull origin master command.

3. Run the salt-call state.sls salt.master command.

13 If you enabled the usage of a self-signhed certificate managed by Salt, apply the following
. state:

salt -C 'l@salt:minion' state.apply salt.minion

14 Apply the following states:

salt -C 'l@keystone:client' state.sls keystone.client

salt -C 'l@galera:master' state.sls galera.server

salt -C 'l@galera:slave' state.apply galera

salt -C 'l@nginx:server' state.sls nginx

salt -C 'l@barbican:server and *01*' state.sls barbican.server

©2025, Mirantis Inc. Page 238

Mirantis Cloud Platform Deployment Guide

salt -C 'l@barbican:server' state.sls barbican.server
salt -C 'l@barbican:client' state.sls barbican.client

15 If you enabled image verification by Nova, apply the following states:

salt -C 'l@nova:controller' state.sls nova -b 1
salt -C 'l@nova:compute' state.sls nova

16 If you enabled volume encryption supported by the key manager, apply the following state:

salt -C 'l@cinder:controller' state.sls cinder -b 1

17 If you have async workers enabled, restart the Barbican worker service:

salt -C 'l@barbican:server' service.restart barbican-worker

18 Restart the Barbican API server:

salt -C 'l@barbican:server' service.restart apache2

19 Verify that Barbican works correctly. For example:

openstack secret store --name mysecret --payload j4=]d21

©2025, Mirantis Inc. Page 239

Mirantis Cloud Platform Deployment Guide

Deploy Barbican with the simple_crypto backend

Warning

The deployment of Barbican with the simple _crypto backend described in this section is
intended for testing and evaluation purposes only. For production deployments, use the
Dogtag backend. For details, see: Deploy Dogtag.

You can configure and deploy Barbican with the simple_crypto backend.
To deploy Barbican with the simple_crypto backend:

1. Open the classes/cluster/<cluster name>/ directory of your Git project repository.
2. In openstack/database/init.yml, add the following class:

classes:
- system.mysql.client.database.barbican

3. In openstack/control/init.yml, add the following class:

classes:
- system.keystone.client.service.barbican

4. In infra/openstack/control.yml, modify the parameters section. For example:

classes:

- system.apache.server.site.barbican

- system.barbican.server.cluster

- service.barbican.server.plugin.simple_crypto

parameters:
_param:
barbican:
server:
store:
software:
crypto_plugin: simple_crypto
store_plugin: store_crypto
global_default: True

5. In infra/secret.yml, modify the parameters section. For example:
parameters:

_param:
barbican_version: ${ param:openstack version}

©2025, Mirantis Inc. Page 240

Mirantis Cloud Platform Deployment Guide

barbican_service_host: ${ param:openstack control_address}
mysql_barbican_password: password123
keystone_barbican_password: password123
barbican_simple_crypto_kek: "base64 encoded 32 bytes as secret key"

6. In openstack/proxy.yml, add the following class:

classes:
- system.nginx.server.proxy.openstack.barbican

7. Optional. Enable image verification:

1. In openstack/compute/init.yml, add the following parameters:

parameters:
_param:
nova:
compute:
barbican:
enabled: ${ param:barbican_integration_enabled}

2. In openstack/control.yml, add the following parameters:

parameters:
_param:
nova:
controller:
barbican:
enabled: ${ param:barbican_integration_enabled}

Note

This configuration changes the requirement for the Glance image upload procedure.
All glance images will have to be updated with signature information. For details, see:
OpenStack Nova and OpenStack Glance documentation.

8. Optional. In openstack/control.yml, enable volume encryption supported by the key
manager:

parameters:
_param:
cinder:
volume:
barbican:
enabled: ${ param:barbican_integration_enabled}

©2025, Mirantis Inc. Page 241

https://docs.openstack.org/nova/latest/user/certificate-validation.html
https://docs.openstack.org/glance/pike/user/signature.html

Mirantis Cloud Platform Deployment Guide

9. Optional. In init.yml, add the following parameters if you plan to use a self-signed certificate
managed by Salt:

parameters:
_param:
salt:
minion:
trusted_ca_minions:
- cfg01

10 Commit and push the changes to the project Git repository.
11 Log in to the Salt Master node.

12 Update your Salt formulas at the system level:

1. Change the directory to /srv/salt/reclass.
2. Run the git pull origin master command.

3. Run the salt-call state.sls salt.master command.

13 If you enabled the usage of a self-signed certificate managed by Salt, apply the following
. state:

salt -C 'l@salt:minion’' state.apply salt.minion

14 If you enabled image verification by Nova, apply the following states:

salt -C 'l@nova:controller' state.sls nova -b 1
salt -C 'l@nova:compute' state.sls nova

15 If you enabled volume encryption supported by the key manager, apply the following state:

salt -C 'l@cinder:controller' state.sls cinder -b 1

16 Apply the following states:

salt -C 'l@keystone:client' state.apply keystone.client

salt -C 'l@galera:master' state.apply galera.server

salt -C 'l@galera:slave' state.apply galera

salt -C 'l@nginx:server' state.apply nginx

salt -C 'l@haproxy:proxy' state.apply haproxy.proxy

salt -C 'l@barbican:server and *01*' state.sls barbican.server
salt -C 'l@barbican:server' state.sls barbican.server

salt -C 'l@barbican:client' state.sls barbican.client

©2025, Mirantis Inc. Page 242

Mirantis Cloud Platform Deployment Guide

Seealso

Barbican OpenStack documentation

©2025, Mirantis Inc. Page 243

https://docs.openstack.org/barbican/latest/

Mirantis Cloud Platform Deployment Guide

Deploy Ironic

While virtualization provides outstanding benefits in server management, cost efficiency, and
resource consolidation, some cloud environments with particularly high 1/O rate may require
physical servers as opposed to virtual.

MCP supports bare-metal provisioning for OpenStack environments using the OpenStack Bare
Metal service (lronic). Ironic enables system administrators to provision physical machines in the
same fashion as they provision virtual machines.

Note

Starting from the 2019.2.6 maintenance update, Ironic is officially supported and
integrated into MCP. Before the 2019.2.6 maintenance update, Ironic is available as
technical preview and can be used for testing and evaluation purposes only.

©2025, Mirantis Inc. Page 244

Mirantis Cloud Platform Deployment Guide

Limitations

When you plan on using the OpenStack Bare Metal provisioning service (lronic), consider the
following limitations:

Specific hardware limitations
When choosing hardware (switch) to be used by Ironic, consider hardware limitations of a
specific vendor.

Only iSCSI deploy drivers are enabled
Ironic is deployed with only iSCSI deploy drivers enabled which may pose performance
limitations for deploying multiple nodes concurrently. You can enable agent-based Ironic
drivers manually after deployment if the deployed cloud has a working Swift-compatible
object-store service with support for temporary URLs, with Glance configured to use the
object store service to store images. For more information on how to configure Glance for
temporary URLs, see OpenStack documentation.

Seealso
MCP Ironic supported features and known limitations

©2025, Mirantis Inc. Page 245

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/vcp-plan/vcp-openstack-extra/ironic-plan/ironic-features-support.html

Mirantis Cloud Platform Deployment Guide

Modify the deployment model

To use the OpenStack Bare Metal service, you need to modify your Reclass model before
deploying a new OpenStack environment. You can also deploy the OpenStack Bare Metal service
in the existing OpenStack environment.

As bare-metal configurations vary, this section provides examples of deployment model
modifications. You may need to tailor them for your specific use case.

The configuration examples in this section presuppose the following:

* The OpenStack Bare Metal API service runs on the OpenStack Controller node

* The Bare Metal service for ironic-conductor and other services per the bare-metal role
reside on the bmt01, bmt02, and bmt03 nodes

* Separate flat network is used between the bmt* and gtw* nodes

* The network configuration:

e Control network: 10.11.0.0/16
* Bare-metal network: 10.13.0.0/16

* Bare-metal interface: ens6
To modify the deployment model:

1. Select from the following options:

* For the MCP versions prior to the 2019.2.6 maintenance update, Create a deployment
metadata model.

* For the MCP versions 2019.2.6 and later, when creating a deployment model as
described in Create a deployment metadata model, set the ironic_enabled parameter
to True that will automatically add most of the Ironic parameters and classes described
in the following steps.

2. Open the cluster level of your Reclass model.

3. In the ./openstack/init.yml file, add or update the following parameters to match your
specific bare metal configuration:

Caution!

The openstack baremetal neutron_subnet parameters must match your bare metal
network settings. The bare metal nodes must be connected to the network before the
deployment. During the deployment, MCP automatically registers this network in the
OpenStack Networking service.

parameters:
_param:
openstack_baremetal_address: 10.11.0.5

©2025, Mirantis Inc. Page 246

Mirantis Cloud Platform Deployment Guide

openstack_baremetal_node0Ol_address: 10.11.0.6
openstack_baremetal_node02_address: 10.11.0.7
openstack_baremetal_node03_address: 10.11.0.8

openstack _baremetal_node0l_hostname: bmt01

openstack _baremetal_node02_hostname: bmt02
openstack_baremetal_node03_hostname: bmt03
openstack_baremetal_address_baremetal: 10.13.0.10
openstack_baremetal_node0Ol_baremetal_address: 10.13.0.11
openstack_baremetal_node02_baremetal_address: 10.13.0.12
openstack_baremetal_node03_baremetal_address: 10.13.0.13
openstack_baremetal_neutron_subnet_cidr: 10.13.0.0/16
openstack_baremetal_neutron_subnet_allocation_start: 10.13.90.1
openstack_baremetal_neutron_subnet_allocation_end: 10.13.199.255
mysql_ironic_password: ${ param:mysql_ironic_password_generated}
keystone_ironic_password: ${_param:keystone_ironic_password_generated}
ironic_version: ${_param:openstack_version}

4. Verify that the following pillars are defined in ./openstack/init.yml:

parameters:
linux:
network:
host:
bmtO1:
address: ${ param:openstack _baremetal node01 address}
names:
- ${ param:openstack baremetal node0l hostname}
- ${ param:openstack baremetal node01l hostname}.${ param:cluster domain}
bmt02:
address: ${ param:openstack _baremetal node02_address}
names:
- ${ param:openstack baremetal node02_hostname}
- ${ param:openstack baremetal node02_hostname}.${ param:cluster domain}
bmt03:
address: ${ param:openstack _baremetal node03 address}
names:
- ${ param:openstack baremetal node03 hostname}
- ${ param:openstack baremetal node03 hostname}.${ param:cluster domain}

5. Verify that the following classes are included into infra/config/init.yml:

- system.reclass.storage.system.openstack baremetal cluster
- system.salt.master.formula.pkg.baremetal

6. Verify that the following classes are included into openstack/database.yml:

- system.galera.server.database.ironic

©2025, Mirantis Inc. Page 247

Mirantis Cloud Platform Deployment Guide

7. Verify that the following parameters are defined in infra/secrets.yml:

mysql_ironic_password: some_password
keystone_ironic_password: some_password
keepalived_openstack_baremetal_password_generated: some_password

8. Verify that the following pillars and classes are added to openstack/control.yml:

- system.haproxy.proxy.listen.openstack.ironic
- system.ironic.api.cluster
parameters:
_param:
ironic_service_host: ${ param:cluster vip address}
cluster_baremetal local address: ${ param:cluster local address}
ironic_api_type: 'public'

neutron:
server:
ironic_enabled: True
backend:
ironic_vlan_range: 100:1000

9. Verify that the following classes are included into openstack/control/init.yml:

- service.ironic.client
- system.neutron.client.service.ironic
- system.keystone.client.service.ironic

10 Verify that the openstack/baremetal.yml file is present in the model with the following
. exemplary content:

classes:

- system.linux.system.repo.mcp.apt_mirantis.extra

- system.linux.system.repo.mcp.apt_mirantis.openstack
- cluster.${CLUSTER_NAME}.infra

- system.ironic.api.cluster

- system.ironic.conductor.cluster

- system.ironic.tftpd_hpa

- system.nova.compute_ironic.cluster

- system.apache.server.single

- system.apache.server.site.ironic

- system.keepalived.cluster.instance.openstack_baremetal_vip
- system.haproxy.proxy.listen.openstack.ironic_deploy

- system.haproxy.proxy.single

parameters:
_param:

©2025, Mirantis Inc. Page 248

Mirantis Cloud Platform Deployment Guide

ironic_api_type: 'deploy’

cluster_vip_address: ${_param:openstack_control_address}

ironic_service_host: ${_param:cluster_vip_address}

cluster_local_address: ${_param:single_address}

cluster_baremetal_vip_address: ${_param:openstack_baremetal_address_baremetal}
cluster_baremetal_local_address: ${_param:baremetal_address}
keepalived_openstack_baremetal_vip_interface: ens6
cluster_node01_hostname: ${_param:openstack_baremetal_node0l_hostname}
cluster_nodeO1_address: ${_param:openstack_baremetal_nodeOl_address}
cluster_node02_hostname: ${_param:openstack_baremetal_node02_hostname}
cluster_node02_address: ${_param:openstack baremetal_node02_address}
cluster_node03_hostname: ${_param:openstack_baremetal_node03_hostname}
cluster_node03_address: ${_param:openstack_baremetal_node03_address}
keepalived_openstack_baremetal_password: ${_param:keepalived_openstack_baremetal_password_generated}

11 Verify that the following pillars and classes are added into openstack/proxy.yml:

classes:
- system.nginx.server.proxy.openstack.ironic
parameters:
_param:
ironic_service_host: ${_param:openstack_control_address}

12 Verify that the following pillars are added into openstack/gateway.yml:

neutron:
gateway:
ironic_enabled: True
linux:
network:
interface:
br-baremetal:
enabled: true
type: ovs_bridge
mtu: ${ param:interface_mtu}
ens6:
enabled: true
name: ens6
type: eth
proto: manual
ovs_bridge: br-baremetal
ovs_type: OVSPort
ipflush_onchange: true
restart_on_ipflush: true

13 In openstack/control.yml, enroll the bare metal nodes dedicated for Ironic:

parameters:
ironic:
client:
enabled: true

©2025, Mirantis Inc. Page 249

Mirantis Cloud Platform Deployment Guide

nodes:
admin_identity:
- hame: <node name>

driver: pxe_ipmitool

properties:
local_gb: <size of node's disk in GiB>
cpus: <Number of CPUs on the node>
memory_mb: <RAM size of the node in MiB>
cpu_arch: <architecture of node's CPU>

driver_info:
ipmi_username: <username for IPM|>
ipmi_password: <password for the IPMI user>
ipmi_address: <IPMI address of the node>

ports:
- address: <MAC address of the node portl>
- address: <MAC address of the node port2>

14 Proceed to Install the Bare Metal service components.

©2025, Mirantis Inc.

Page 250

Mirantis Cloud Platform Deployment Guide

Install the Bare Metal service components

Caution!

The procedure below applies to existing MCP clusters and to new MCP clusters prior to the
2019.2.6 maintenance update.

Starting from 2019.2.6, you can skip the procedure below for new MCP clusters and
deploy Ironic automatically using the OpenStack deployment pipeline as described in
Deploy an OpenStack environment.

After you have configured the deployment model as described in Modify the deployment model,
install the Bare Metal service components, including Ironic API, Ironic Conductor, Ironic Client,
and others.

To install the Bare Metal service components:

1. Install Ironic API:

salt -C 'l@ironic:api and *01*' state.sls ironic.api
salt -C 'l@ironic:api' state.sls ironic.api

2. Install Ironic Conductor:

salt -C 'l@ironic:conductor' state.sls ironic.conductor

3. Install Ironic Client:

salt -C 'l@ironic:client and *01*' state.sls ironic.client
salt -C 'l@ironic:client' state.sls ironic.client

4. Install software required by Ironic, such as Apache and TFTP server:

salt -C 'l@ironic:conductor' state.sls apache
salt -C 'l@tftpd_hpa:server' state.sls tftpd_hpa

5. Install nova-compute with ironic virt-driver:

salt -C 'l@nova:compute' state.sls nova.compute

salt -C 'l@nova:compute' cmd.run 'systemctl restart nova-compute'
6. Log in to an OpenStack Controller node.
7. Verify that the Ironic services are enabled and running:

salt -C 'l@ironic:client' cmd.run '. /root/keystonercv3; ironic driver-list'

©2025, Mirantis Inc. Page 251

Mirantis Cloud Platform Deployment Guide

Deploy Manila

Caution!

Manila deprecation notice

In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for
deprecation. The corresponding capabilities are still available, although not further
enhanced.

Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will
no longer be supported by Mirantis. For those existing customers who have the Manila
functionality explicitly included in the scope of their contracts, Mirantis will continue to
fulfill the corresponding support obligations.

Manila, also known as the OpenStack Shared File Systems service, provides coordinated access
to shared or distributed file systems that a compute instance can consume.

©2025, Mirantis Inc. Page 252

Mirantis Cloud Platform Deployment Guide

Modify the deployment model

Caution!

Manila deprecation notice

In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for
deprecation. The corresponding capabilities are still available, although not further
enhanced.

Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will
no longer be supported by Mirantis. For those existing customers who have the Manila
functionality explicitly included in the scope of their contracts, Mirantis will continue to
fulfill the corresponding support obligations.

You can enable Manila while generating you deployment metadata model using the Model
Designer Ul before deploying a new OpenStack environment. You can also deploy Manila on an
existing OpenStack environment.

The manila-share service may use different backends. This section provides examples of
deployment model modifications for the LVM backend. You may need to tailor these examples
depending on the needs of your deployment. Basically, the examples provided in this section
describe the following configuration:

* The OpenStack Manila APl and Scheduler services run on the OpenStack share nodes.

* The manila-share service and other services per share role may reside on the share or cmp
nodes depending on the backend type. The default LVM-based shares reside on the cmp
nodes.

To modify the deployment model:

1. While generating a deployment metadata model for your new MCP cluster as described in
Create a deployment metadata model, select Manila enabled and modify its parameters as
required in the Product parameters section of the Model Designer Ul.

2. If you have already generated a deployment metadata model without the Manila service or
to enable this feature on an existing MCP cluster:

1. Open your Reclass model Git project repository on the cluster level.

2. Modify the ./infra/config.yml file:

classes:

- system.reclass.storage.system.openstack share_multi
- system.salt.master.formula.pkg.manila

3. Modify the ./infra/secrets.yml file:

©2025, Mirantis Inc. Page 253

Mirantis Cloud Platform Deployment Guide

parameters:
_param:

keystone_manila_password_generated: some_password

mysql_manila_password_generated: some_password

manila_keepalived_vip_password_generated: some_password
4. Modify the ./openstack/compute/init.yml file:

classes:

- system.manila.share
- system.manila.share.backend.lvm

parameters:
_param:

manila_Ilvm_volume_name: <lvm_volume_name>
manila_lvm_devices: <list of lvm_devices>

5. Modify the ./openstack/control/init.yml file:

classes:

- system.keystone.client.service.manila
- system.keystone.client.service.manila2
- system.manila.client

parameters:
_param:

manila_share_type_default _extra_specs:
driver_handles_share_servers: False
snapshot_support: True
create_share_from_snapshot_support : True
mount_snapshot_support : True
revert_to_snapshot_support : True
6. Modify the ./openstack/database.yml file:
classes:
- system.galera.server.database.manila

7. Modify the ./openstack/init.yml file:

©2025, Mirantis Inc. Page 254

Mirantis Cloud Platform Deployment Guide

parameters:
_param:

manila_service_host: ${_param:openstack share_address}

keystone_manila_password: ${ param:keystone_manila_password_generated}
mysql_manila_password: ${ param:mysql_manila_password_generated}
openstack_share_address: <share_address>

openstack_share_node0l_address: <share_node0l_address>
openstack_share_node02_address: <share_node02_address>
openstack_share_node03_address: <share_node03_address>

openstack _share_node0l_share_address: ${ param:openstack share node0l address}
openstack _share_node02_share_address: ${ param:openstack share_node02_address}
openstack_share_node03_share_address: ${_param:openstack_share_node03_address}
openstack_share_node0l_deploy_address: <share_node0l_deploy address>
openstack_share_node02_deploy_address: <share_node02_deploy address>
openstack_share_node03_deploy_address: <share_node03_deploy address>
openstack_share_hostname: <share_hostname>
openstack_share_node0l1l_hostname: <share_node0l_hostname>
openstack_share_node02_hostname: <share_node02_hostname>
openstack_share_node03_hostname: <share_node03_hostname>

linux:
network:
host:

shareO1:
address: ${ param:openstack share_nodeOl address}
names:
- ${_param:openstack_share_node0Ol_hostname}
- ${_param:openstack_share_nodeOl_hostname}.${_param:cluster_domain}
share02:
address: ${_param:openstack share_node02_address}
names:
- ${_param:openstack_share_node02_hostname}
- ${_param:openstack_share_node02_hostname}.${_param:cluster_domain}
share03:
address: ${_param:openstack share_node03_address}
names:
- ${_param:openstack _share_node03_hostname}
- ${_param:openstack_share_node03_hostname}.${_param:cluster_domain}

8. Modify the ./openstack/proxy.yml file:
classes:
- system.nginx.server.proxy.openstack.manila

9. Modify the ./Jopenstack/share.yml file:

classes:

©2025, Mirantis Inc. Page 255

Mirantis Cloud Platform Deployment Guide

system.linux.system.repo.mcp.extra
system.linux.system.repo.mcp.apt_mirantis.openstack
system.apache.server.single
system.manila.control.cluster
system.keepalived.cluster.instance.openstack_manila_vip

parameters:

3. If you

_param:

manila_cluster_vip_address: ${_param:openstack_control_address}
cluster_vip_address: ${ _param:openstack share_address}
cluster_local_address: ${_param:single_address}
cluster_nodeO1_hostname: ${_param:openstack_share_node0Ol_hostname}
cluster_node01_address: ${ param:openstack share node0Ol address}
cluster_node02_hostname: ${ param:openstack share_node02_hostname}
cluster node02_address: ${ param:openstack share node02 address}
cluster node03 _hostname: ${ param:openstack share node03 hostname}
cluster_node03_address: ${_param:openstack share _node03_address}
keepalived_vip_interface: ens3

keepalived_vip_address: ${_ param:cluster vip_address}
keepalived_vip_password: ${ param:manila_keepalived_vip_password_generated}
apache_manila_api_address: ${ param:cluster_local address}

manila:
common:
default_share_type: default

plan a separate storage network for Manila, define the manila_share_address

parameter on the cluster level of your Reclass model in the file that contains the
configuration for the Manila share backend. For example, for the LVM backend, modify the
.Jopenstack/compute/init.yml file:

parameters:
_param:
manila_share_address: <ip_address>

4. Proceed to Install the Manila components.

Seealso

MCP Reference Architecture: Manila storage networking planning

©2025, Mirantis Inc. Page 256

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/vcp-plan/vcp-openstack-extra/manila-storage-networking-plan.html

Mirantis Cloud Platform Deployment Guide

Install the Manila components

Caution!

Manila deprecation notice

In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for
deprecation. The corresponding capabilities are still available, although not further
enhanced.

Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will
no longer be supported by Mirantis. For those existing customers who have the Manila
functionality explicitly included in the scope of their contracts, Mirantis will continue to
fulfill the corresponding support obligations.

After you have configured the deployment model as described in Modify the deployment model,
install the Manila components that include the manila-api, manila-scheduler, manila-share,
manila-data, and other services.

To install the Manila components:

1.
2.

Log in to the Salt Master node.

Refresh your Reclass storage data:

salt-call state.sls reclass.storage

. Install manila-api:

salt -C 'l@manila:api and *01*' state.sls manila.api
salt -C 'l@manila:api' state.sls manila.api

. Install manila-scheduler:

salt -C 'l@manila:scheduler' state.sls manila.scheduler

. Install manila-share:

salt -C 'l@manila:share' state.sls manila.share

. Install manila-data:

salt -C 'l@manila:data' state.sls manila.data

. Install the Manila client:

©2025, Mirantis Inc.

Page 257

Mirantis Cloud Platform Deployment Guide

salt -C 'l@manila:client' state.sls manila.client

8. Log in to any OpenStack controller node.

9. Verify that the Manila services are enabled and running:

salt 'cfg01*' cmd.run 'source keystonercv3; manila list'
salt 'cfg01*' cmd.run 'source keystonercv3; manila service-list'

Secure memcached for the OpenStack services

This section provides the instruction on how to enable the memcached protection in the
OpenStack Pike deployments.

The OpenStack services that support the memcached protection include Aodh, Barbican, Cinder,
Glance, Gnocchi, Heat, Ironic, Neutron, Nova, and Panko.

When using Memcached, tokens and authentication responses are stored in the cache as raw
data. If the cache is compromised, tokens and authentication responses become readable. To
mitigate this risk, MCP uses the auth_token middleware that provides for the authentication and
encryption of the token data stored in the cache by means of the following configuration
parameters:

* memcache_security strategy

Indicates whether the token data should be authenticated or authenticated and
encrypted. Acceptable values include:

* MAC to authenticate (with HMAC) the token data in cache

* ENCRYPT to encrypt and authenticate the token data in cache
If the value is not set or empty, auth_token raises an exception on initialization.

* memcache_secret key

Mandatory if memcache_security strategy is defined. Used for key derivation. If
memcache_security strategy is defined and memcache secret key is not set,
auth_token raises an exception on initialization.

MCP OpenStack supports the memcached protection since the Pike release. By default, this
functionality is disabled in the Pike deployments. For Queens and newer releases, the
memcached protection is enabled by default with the ENCRYPT security strategy.

To enable the memcached protection:

1. Log in to the Salt Master node.
2. Update your Reclass metadata model.

3. Verify the pillars. For example, for nova:controller:

salt -C 'l@nova:controller' pillar.get nova:controller:cache:security

Example of system response:

©2025, Mirantis Inc. Page 258

Mirantis Cloud Platform Deployment Guide

---Output---
ctl02.node.local:

enabled:
False
secret_key:
strategy:
ENCRYPT
ctl03.node.local:
enabled:
False
secret_key:
strategy:
ENCRYPT
ctl0l.node.local:

False
secret_key:
strategy:

ENCRYPT

---End output---

4. Select from the following options:

* Enable the memcache security and specify the secret keys globally by modifying the
cluster level of your deployment model:

1. In the <cluster name>/openstack/init.yml file, enable the cache security, set the

security strategy, and define the secret keys for the required OpenStack services.
For example:

parameters:
_param:

openstack_memcache_security_enabled: True
openstack_memcache_security_strategy: ENCRYPT
nova_memcache_secret_key: <SECRET KEY>
neutron_memcache_secret_key: <SECRET KEY>

2. Refresh pillars:
salt "*' saltutil.refresh_pillar

3. Verify pillars for the OpenStack services. For example, for the Nova controller:

©2025, Mirantis Inc. Page 259

Mirantis Cloud Platform Deployment Guide

salt -C 'l@nova:controller' pillar.get nova:controller:cache:security

Example of system response:

---Output---
ctl02.node.local:

True
secret_key:
ez6D6unod2PB4Aqgp
strategy:
ENCRYPT
ctl03.node.local:
enabled:
True
secret_key:
ez6D6unod2PB4Aqgp
strategy:
ENCRYPT
ctl0l.node.local:
enabled:
True
secret_key:
ez6D6unod2PB4Aqgp
strategy:
ENCRYPT
---End Output---

4. Apply the changes for all required OpenStack services by running the appropriate
service states listed in the table below.

* Define the memcache security parameters through the pillars in a granular way, which
allows for particular services configuration if required.

Memcache protection configuration for the OpenStack services

Open

Stack

servic
)

Define custom pillar Apply the change

©2025, Mirantis Inc. Page 260

Mirantis Cloud Platform Deployment Guide

Aodh

aodh:
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@aodh:server' state.sls aodh

Barbic
an

barbican:
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@barbican:server' state.sls barbican.server

Cinder

cinder:
controller:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

cinder:
volume:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@cinder:controller or I@cinder:volume' state.sls cinder

Glance

glance:
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@glance:server' state.sls glance.server

©2025, Mirantis Inc.

Page 261

Mirantis Cloud Platform Deployment Guide

Gnocc
hi

gnocchi:
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@gnocchi:server' state.sls gnocchi.server

Heat

heat:
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@heat:server' state.sls heat.server

Ironic

ironic:
api:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT
conductor:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@ironic:api' state.sls ironic.api
salt -C 'l@ironic:conductor' state.sls ironic.conductor

Neutro
n

neutron:
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

salt -C 'l@neutron:server’ state.sls neutron.server

©2025, Mirantis Inc.

Page 262

Mirantis Cloud Platform Deployment Guide

Nova salt -C 'l@nova:controller or I@nova:compute' state.sls nova
nova:
controller:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT
nova:
compute:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT
Panko panko: salt -C 'l@panko:server state.sls panko.server
server:
cache:
security:
enabled: True
secret_key: secret-key
strategy: ENCRYPT

Deploy a Ceph cluster

Ceph is a storage backend for cloud environments. This section guides you through the manual
deployment of a Ceph cluster. To deploy a Ceph cluster with nodes in different L3
compartments, first perform the prerequisite steps as described in Prerequisites for a Ceph
cluster distributed over L3 domains. Otherwise, proceed with Deploy a Ceph cluster.

©2025, Mirantis Inc.

Page 263

Mirantis Cloud Platform Deployment Guide

Prerequisites for a Ceph cluster distributed over L3 domains

Note

This feature is available starting from the MCP 2019.2.5 maintenance update. Before
enabling the feature, follow the steps described in Apply maintenance updates.

Before deploying a Ceph cluster with nodes in different L3 compartments, consider the following
prerequisite steps. Otherwise, proceed to Deploy a Ceph cluster right away.

This document uses the terms failure domain and L3 compartment. Failure domains are a logical
representation of a physical cluster structure. For example, one L3 segment spans two racks and
another one spans a single rack. In this case, failure domains reside along the rack boundary,
instead of the L3 segmentation.

1. Verify your networking configuration:

Note

Networking verification may vary depending on the hardware used for the
deployment. Use the following steps as a reference only.

1. To ensure the best level of high availability, verify that the Ceph Monitor and RADOS
Gateway nodes are distributed as evenly as possible over the failure domains.

2. Verify that the same number and weight of OSD nodes and OSDs are defined in each L3
compartment for the best data distribution:

1. In classes/cluster/cluster_name/ceph/osd.yml, verify the Ceph OSDs weight. For
example:

backend:
bluestore:
disks:

- dev: /dev/vdc
block_db: /dev/vdd
class: hdd
weight: 1.5

2. In classes/cluster/cluster_name/infra/config/nodes.yml, verify the number of OSDs.

3. Verify the connection between the nodes from different compartments through public
or cluster VLANs. To use different subnets for the Ceph nodes in different
compartments, specify all subnets in classes/cluster/cluster_ name/ceph/common.yml.
For example:

©2025, Mirantis Inc. Page 264

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-5/mu-5-apply-updates.html

Mirantis Cloud Platform Deployment Guide

parameters:
ceph:
common:
public_network: 10.10.0.0/24, 10.10.1.0/24
cluster_network: 10.11.0.0/24, 10.11.1.0/24

2. Prepare the CRUSHMAP:

1. To ensure at least one data replica in every failure domain, group the Ceph OSD nodes
from each compartment by defining the ceph crush parent parameter in
classes/cluster/cluster_name/infra/config/nodes.yml for each Ceph OSD node. For
example, for three Ceph OSDs in rackO1:

ceph_osd_rackO1:
name: ${ param:ceph_osd rack01l_hostname}<<count>>
domain: ${ param:cluster_domain}
classes:
- cluster.${_param:cluster_name}.ceph.osd
repeat:
count: 3
ip_ranges:
single_address: 10.11.11.1-10.
backend_address: 10.12.11.1-1
ceph_public_address: 10.13.11
start: 1
digits: 0
params:
single_address:
value: <<single_address>>
backend_address:
value: <<backend_address>>
ceph_public_address:
value: <<ceph_public_address>>
params:
salt_master_host: ${ param:reclass_config_master}
ceph_crush_parent: rack01
linux_system_codename: xenial

1.20.255
0.12.20.255
.1-10.13.20.255

2. In /classes/cluster/cluster name/ceph/setup.yml, create a new CRUSHMAP and define
the failure domains. For example, to have three copies of each object distributed over
rack01, rack02, rack03:

parameters:
ceph:
setup:
crush:
enforce: false # uncomment this line and set it to true only if

©2025, Mirantis Inc. Page 265

Mirantis Cloud Platform Deployment Guide

you want to enforce CRUSHMAP with ceph.setup
state !
type: # define any non-standard bucket type here
- root
- region
- rack
- host
- osd
root:
- name: default
room:
- name: rooml
parent: default
- name: room?2
parent: default
- name: room3
parent: default
rack:
- name: rack01 # OSD nodes defined in previous section
will be added to this rack
parent: rooml
- name: rack02
parent: room2
- name: rack03
parent: room3
rule:
default:
ruleset: 0
type: replicated
min_size: 2
max_size: 10
steps:
- take take default
- chooseleaf firstn 0 type region
- emit

Once done, proceed to Deploy a Ceph cluster.

©2025, Mirantis Inc.

Page 266

Mirantis Cloud Platform Deployment Guide

Deploy a Ceph cluster

This section guides you through the manual deployment of a Ceph cluster. If you are deploying a
Ceph cluster distributed over L3 domains, verify that you have performed the steps described in
Prerequisites for a Ceph cluster distributed over L3 domains.

Warning

Converged storage is not supported.

Note

Prior to deploying a Ceph cluster:

1. Verify that you have selected Ceph enabled while generating a deployment model as
described in Define the deployment model.

2.1f you require Tenant Telemetry, verify that you have set the
gnocchi_aggregation_storage option to Ceph while generating the deployment model.

3. Verify that OpenStack services, such as Cinder, Glance, and Nova are up and running.

4. Verify and, if required, adjust the Ceph setup for disks in the
classes/cluster/<CLUSTER_NAME=>/ceph/osd.yml file.

To deploy a Ceph cluster:

1. Log in to the Salt Master node.

2. Update modules and states on all Minions:

salt '*' saltutil.sync_all

3. Run basic states on all Ceph nodes:

salt "*" state.sls linux,openssh,salt,ntp,rsyslog

4. Generate admin and mon keyrings:

salt -C 'l@ceph:mon:keyring:mon or I@ceph:common:keyring:admin' state.sls ceph.mon
salt -C 'l@ceph:mon' saltutil.sync_grains
salt -C 'l@ceph:mon:keyring:mon or I@ceph:common:keyring:admin' mine.update

5. Deploy Ceph mon nodes:

¢ If your Ceph version is older than Luminous:

©2025, Mirantis Inc. Page 267

Mirantis Cloud Platform Deployment Guide

salt -C 'l@ceph:mon' state.sls ceph.mon

* If your Ceph version is Luminous or newer:

salt -C 'l@ceph:mon' state.sls ceph.mon
salt -C 'l@ceph:mgr' state.sls ceph.mgr

6. (Optional) To modify the Ceph CRUSH map:

1. Uncomment the example pillar in the
classes/cluster/<CLUSTER_NAME>/ceph/setup.yml file and modify it as required.

2. Verify the ceph_crush_parent parameters in the
classes/cluster/<CLUSTER_NAME>/infra.config.yml file and modify them if required.

3. If you have modified the ceph_crush_parent parameters, also update the grains:

salt -C 'l@salt:master' state.sls reclass.storage

salt '*' saltutil.refresh_pillar

salt -C 'l@ceph:common' state.sls salt.minion.grains
salt -C 'l@ceph:common' mine.flush

salt -C 'l@ceph:common' mine.update

7. Technical preview qhtinnal. For testing and evaluation purposes, you can enable the
ceph-volume tool instead of ceph-disk to deploy the Ceph OSD nodes:

1. In classes/cluster/<cluster name>/ceph/osd.yml, specify:

parameters:
ceph:
osd:
backend:
bluestore:
create_partitions: True
Ivm_enabled: True

2. Apply the changes:

salt -C 'l@ceph:osd' saltutil.refresh_pillar

8. Deploy Ceph osd nodes:

salt -C 'l@ceph:osd' state.sls ceph.osd

salt -C 'l@ceph:osd' saltutil.sync_grains

salt -C 'l@ceph:osd' state.sls ceph.osd.custom
salt -C 'l@ceph:osd' saltutil.sync_grains

salt -C 'l@ceph:osd' mine.update

salt -C 'l@ceph:setup' state.sls ceph.setup

©2025, Mirantis Inc. Page 268

Mirantis Cloud Platform Deployment Guide

9. Deploy RADOS Gateway:

salt -C 'l@ceph:radosgw' saltutil.sync_grains
salt -C 'l@ceph:radosgw' state.sls ceph.radosgw

10 Set up the Keystone service and endpoints for Swift or S3:

salt -C 'l@keystone:client' state.sls keystone.client
11 Connect Ceph to your MCP cluster:

salt -C 'l@ceph:common and l@glance:server' state.sls ceph.common,ceph.setup.keyring,glance
salt -C 'l@ceph:common and I@glance:server' service.restart glance-api

salt -C 'l@ceph:common and I@glance:server' service.restart glance-glare

salt -C 'l@ceph:common and I@glance:server' service.restart glance-registry

salt -C 'l@ceph:common and I@cinder:controller' state.sls ceph.common,ceph.setup.keyring,cinder
salt -C 'l@ceph:common and I@nova:compute' state.sls ceph.common,ceph.setup.keyring

salt -C 'l@ceph:common and I@nova:compute' saltutil.sync_grains

salt -C 'l@ceph:common and I@nova:compute' state.sls nova

12 If you have deployed StackLight LMA, configure Ceph monitoring:

1. Clean up the /srv/volumes/ceph/etc/ceph directory.

2. Connect Telegraf to Ceph:

salt -C 'l@ceph:common and l@telegraf:remote_agent' state.sls ceph.common

13 If you have deployed Tenant Telemetry, connect Gnocchi to Ceph:

salt -C 'l@ceph:common and I@gnocchi:server' state.sls ceph.common,ceph.setup.keyring
salt -C 'l@ceph:common and I@gnocchi:server' saltutil.sync_grains

salt -C 'l@ceph:common and I@gnocchi:server:role:primary' state.sls gnocchi.server

salt -C 'l@ceph:common and I@gnocchi:server' state.sls gnocchi.server

14 (Optional) If you have modified the CRUSH map as described in the step 6:

1. View the CRUSH map generated in the /etc/ceph/crushmap file and modify it as
required. Before applying the CRUSH map, verify that the settings are correct.

2. Apply the following state:

salt -C 'l@ceph:setup:crush' state.sls ceph.setup.crush

3.0nce the CRUSH map is set up correctly, add the following snippet to the
classes/cluster/<CLUSTER_NAME>/ceph/osd.yml file to make the settings persist even
after a Ceph OSD reboots:

©2025, Mirantis Inc. Page 269

Mirantis Cloud Platform Deployment Guide

ceph:
osd:
crush_update: false

4. Apply the following state:

salt -C 'l@ceph:osd' state.sls ceph.osd

Once done, if your Ceph version is Luminous or newer, you can access the Ceph dashboard
through http://<active_mgr_node_IP>:7000/. Run ceph -s on a cmn node to obtain the active
mgr node.

©2025, Mirantis Inc. Page 270

Mirantis Cloud Platform Deployment Guide

Deploy Xtrabackup for MySQL
MCP uses the Xtrabackup utility to back up MySQL databases.
To deploy Xtrabackup for MySQL.:

1. Apply the xtrabackup server state:

salt -C 'l@xtrabackup:server' state.sls xtrabackup

2. Apply the xtrabackup client state:

salt -C 'l@xtrabackup:client' state.sls openssh.client,xtrabackup

©2025, Mirantis Inc.

Page 271

Mirantis Cloud Platform Deployment Guide

Post-deployment procedures

After your OpenStack environment deployment has been successfully completed, perform a
number of steps to verify all the components are working and your OpenStack installation is

stable and performs correctly at scale.

©2025, Mirantis Inc. Page 272

Mirantis Cloud Platform Deployment Guide

Run non-destructive Rally tests

Rally is a benchmarking tool that enables you to test the performance and stability of your
OpenStack environment at scale.

The Tempest and Rally tests are integrated into the MCP CI/CD pipeline and can be managed
through the DriveTrain web Ul.

For debugging purposes, you can manually start Rally tests from the deployed Benchmark Rally
Server (bmk01) with the installed Rally benchmark service or run the appropriate Docker
container.

To manually run a Rally test on a deployed environment:
1. Validate the input parameters of the Rally scenarios in the task_arguments.yaml file.

2. Create the Cirros image:

Note

If you need to run Glance scenarios with an image that is stored locally, download it
from https://download.cirros-cloud.net/0.3.5/cirros-0.3.5-i386-disk.img:

wget https://download.cirros-cloud.net/0.3.5/cirros-0.3.5-i386-disk.img

openstack image create --disk-format qcow?2 --container-format bare --public --file ./cirros-0.3.5-i386-disk.img cirros
3. Run the Rally scenarios:

rally task start <name_of_file_with_scenarios> --task-args-file task_arguments.yaml

or

rally task start combined_scenario.yaml --task-args-file task_arguments.yaml

©2025, Mirantis Inc. Page 273

https://download.cirros-cloud.net/0.3.5/cirros-0.3.5-i386-disk.img

Mirantis Cloud Platform Deployment Guide

Modify Salt Master password expiration

Due to CIS 5.4.1.1, the Salt Master node password expiration is set to maximum 90 days with a
subsequent access lock if the password is not updated. As a result, if the user does not update
the password, even if PasswordAuthentication is disabled, access to the Salt Master node may
be lost. Perform the following steps to either disable CIS 5.4.1.1 or update the time stamp of the
last password change.

To modify the Salt Master node password expiration:
* For MCP versions before the 2019.2.6 maintenance update, disable CIS 5.4.1.1:

1. Log in to the Salt Master node.

2. Choose from the following options:

* Disable CIS 5.4.1.1 on all nodes for all users:
salt *' cmd.run "getent passwd|awk -F':' '{print \$1}'|xargs -I{} chage -M 99999 -m 7 {}"
* Disable CIS 5.4.1.1 for a particular user:

salt *' cmd.run "chage -M 99999 -m 7 <account>"

3. Run chage -l <account> to verify that Password expires is set to never and
Maximum number of days between password change is set to 99999. For example:

chage -l <account>

Last password change :Jan 29, 2020

Password expires : never

Password inactive : never

Account expires : hever

Minimum number of days between password change 17
Maximum number of days between password change : 99999

Number of days of warning before password expires : 7

* For MCP versions starting from the 2019.2.6 maintenance update, update the time stamp of
the last password change using the helper function. The helper does not update the
password itself. Update the time stamp using the helper function every 30 days or set a
cron job to update the time stamp automatically.

1. Log in to the Salt Master node.

2. Choose from the following options:

* Update the time stamp of the last password change for all users:

salt "**' sharedlib.call cis.fix_last_password_change

* Update the time stamp of the last password change for particular users:

©2025, Mirantis Inc. Page 274

Mirantis Cloud Platform Deployment Guide

salt "*' sharedlib.call cis.fix_last_password_change <accountl> [<account2>]

3. Run chage -l <account> to verify that Last password change is set to the current date
and Password expires is set to the date 90 days after the current one. For example:

chage -l <account>

Last password change :Jan 29, 2020

Password expires : Apr 28, 2020

Password inactive : never

Account expires : never

Minimum number of days between password change 17
Maximum number of days between password change : 90

Number of days of warning before password expires : 7

4. Optional. Set a cron job to automatically update the time stamp every 30 days:

1. Run crontab -e.

2. Schedule the cron job:

0 11 **salt'™*" sharedlib.call cis.fix_last_password_change <accountl>

©2025, Mirantis Inc. Page 275

Mirantis Cloud Platform Deployment Guide

Troubleshoot

This section provides solutions to the issues that may occur while installing Mirantis Cloud
Platform.

Troubleshooting of an MCP installation usually requires the salt command usage. The following
options may be helpful if you run into an error:

* -| LOG_LEVEL, --log-level=LOG_LEVEL

Console logging log level. One of all, garbage, trace, debug, info, warning, error, or quiet.
Default is warning

* --state-output=STATE_OUTPUT

Override the configured STATE_OUTPUT value for minion output. One of full, terse, mixed,
changes, or filter. Default is full.

To synchronize all of the dynamic modules from the file server for a specific environment, use
the saltutil.sync_all module. For example:

salt ™*' saltutil.sync_all

©2025, Mirantis Inc. Page 276

Mirantis Cloud Platform Deployment Guide

Troubleshooting the server provisioning

This section includes the workarounds for the following issues:

©2025, Mirantis Inc. Page 277

Mirantis Cloud Platform Deployment Guide

Virtual machine node stops responding
If one of the control plane VM nodes stops responding, you may need to redeploy it.

Workaround:

1. From the physical node where the target VM is located, get a list of the VM domain IDs and
VM names:

virsh list
2. Destroy the target VM (ungraceful powering off of the VM):
virsh destroy DOMAIN_ID
3. Undefine the VM (removes the VM configuration from KVM):
virsh undefine VM_NAME
4. Verify that your physical KVM node has the correct salt-common and salt-minion version:

apt-cache policy salt-common
apt-cache policy salt-minion

Note

If the salt-common and salt-minion versions are not 2015.8, proceed with Install the
correct versions of salt-common and salt-minion.

5. Redeploy the VM from the physical node meant to host the VM:
salt-call state.sls salt.control

6. Verify the newly deployed VM is listed in the Salt keys:
salt-key

7. Deploy the Salt states to the node:
salt 'OST_NAME*' state.sls linux,ntp,openssh,salt

8. Deploy service states to the node:

salt 'HOST_NAME*' state.sls keepalived,haproxy,SPECIFIC_SERVICES

©2025, Mirantis Inc. Page 278

Mirantis Cloud Platform Deployment Guide

Note

You may need to log in to the node itself and run the states locally for higher success
rates.

©2025, Mirantis Inc. Page 279

Mirantis Cloud Platform Deployment Guide

Troubleshoot Ceph
This section includes workarounds for the Ceph-related issues that may occur during the
deployment of a Ceph cluster.

©2025, Mirantis Inc. Page 280

Mirantis Cloud Platform Deployment Guide

Troubleshoot an encrypted Ceph OSD

During the deployment of a Ceph cluster, an encrypted OSD may fail to be prepared or activated
and thus fail to join the Ceph cluster. In such case, remove all the disk partitions as described
below.

Workaround:

1. From the Ceph OSD node where the failed encrypted OSD disk resides, erase its partition
table:

dd if=/dev/zero of=/dev/<<ADD>> bs=512 count=1 conv=notrunc
2. Reboot the server:
reboot

3. Run the following command twice to create a partition table for the disk and to remove the
disk data:

ceph-disk zap /dev/<<ADD>>;
4. Remove all disk signatures using wipefs:

wipefs --all --force /dev/<<ADD>>%*;

©2025, Mirantis Inc. Page 281

Mirantis Cloud Platform Deployment Guide

Deploy a Kubernetes cluster manually

Caution!

Kubernetes support termination notice

Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

Kubernetes is the system for containerized applications automated deployment, scaling, and
management. This section guides you through the manual deployment of a Kubernetes cluster
on bare metal with Calico plugin set for Kubernetes networking. For an easier deployment
process, use the automated DriveTrain deployment procedure described in Deploy a Kubernetes
cluster.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

©2025, Mirantis Inc. Page 282

https://github.com/salt-formulas

Mirantis Cloud Platform Deployment Guide

Prerequisites
The following are the prerequisite steps for a manual MCP Kubernetes deployment:

1. Prepare six nodes:

¢ 1 x configuration node - a host for the Salt Master node. Can be a virtual machine.

* 3 X Kubernetes Master nodes (ctl) - hosts for the Kubernetes control plane components
and etcd.

¢ 2 X Kubernetes Nodes (cmp) - hosts for the Kubernetes pods, groups of containers that
are deployed together on the same host.

2. For an easier deployment and testing, the following usage of three NICs is recommended:

* 1 x NIC as a PXE/DHCP/Salt network (PXE and DHCP is are third-party services in a data
center, unmanaged by SaltStack)

* 2 x NICs as bond active-passive or active-active with two 10 Gbit slave interfaces
3. Create a project repository.

4. Create a deployment metadata model.

5. Optional. Add additional options to the deployment model as required:

* Enable horizontal pod autoscaling

* Enable Virtlet

* Enable the MetallLB support

* Enable an external Ceph RBD storage

* Enable Helm support

6. If you have swap enabled on the ctl and cmp nodes, modify the deployment model as
described in Add swap configuration to a Kubernetes deployment model.

7. Define interfaces.

8. Deploy the Salt Master node.
Now, proceed to Deploy a Kubernetes cluster.

©2025, Mirantis Inc. Page 283

Mirantis Cloud Platform Deployment Guide

Salt formulas used in the Kubernetes cluster deployment
MCP Kubernetes cluster standard deployment uses the following Salt formulas to deploy and
configure a Kubernetes cluster:
salt-formula-kubernetes

Handles Kubernetes hyperkube binaries, CNI plugins, Calico manifests, containerd
salt-formula-etcd

Provisions etcd clusters
salt-formula-bird

Customizes BIRD templates used by Calico to provide advanced networking scenarios for
route distribution through BGP

©2025, Mirantis Inc. Page 284

Mirantis Cloud Platform Deployment Guide

Add swap configuration to a Kubernetes deployment model

If you have swap enabled on the ctl and cmp nodes, configure your Kubernetes model to make
kubelet work correctly with swapping.

To add swap configuration to a Kubernetes deployment model:
1. Open your Git project repository.

2. In classes/cluster/<cluster-name>/kubernetes/control.yml, add the following snippet:

parameters:
kubernetes:
master:
kubelet:
fail_on_swap: False

3. In classes/cluster/<cluster-name>/kubernetes/compute.yml, add the following snippet:

parameters:
kubernetes:
pool:
kubelet:
fail_on_swap: False

Now, proceed with further MCP Kubernetes cluster configuration as required.

©2025, Mirantis Inc. Page 285

Mirantis Cloud Platform Deployment Guide

Define interfaces

Since Cookiecutter is simply a tool to generate projects from templates, it cannot handle all
networking use-cases. Your cluster may include a single interface, two interfaces in bond, bond
and management interfaces, and so on.

This section explains how to handle 3 interfaces configuration:

* ethO interface for pxe

* ethl and eth2 as bondO slave interfaces
To configure network interfaces:

1. Open your MCP Git project repository.
2. Open the {{ cookiecutter.cluster_name }}/kubernetes/init.yml file for editing.

3. Add the following example definition to this file:

parameters:

_param:
deploy_nic: eth0
primary_first_nic: ethl
primary_second_nic: eth2
linux:

network:

interface:
deploy_nic:
name: ${ param:deploy_nic}
enabled: true
type: eth
proto: static
address: ${ param:deploy_address}
netmask: 255.255.255.0
primary_first_nic:
name: ${ param:primary first_nic}
enabled: true
type: slave
master: bond0
mtu: 9000
pre_up_cmds:
- /sbin/ethtool --offload eth6 rx off tx off tso off gro off
primary_second_nic:
name: ${ param:primary_second_nic}
type: slave
master: bond0
mtu: 9000
pre_up_cmds:

©2025, Mirantis Inc. Page 286

Mirantis Cloud Platform Deployment Guide

- /sbin/ethtool --offload eth7 rx off tx off tso off gro off
bondO:

enabled: true

proto: static

type: bond

use_interfaces:

- ${_param:primary_first_nic}

- ${_param:primary_second_nic}

slaves: ${_param:primary_first_nic} ${_param:primary_second_nic}

mode: active-backup

mtu: 9000

address: ${ param:single_address}

netmask: 255.255.255.0

name_servers:

- {{ cookiecutter.dns_server01 }}

- {{ cookiecutter.dns_server02 }}

©2025, Mirantis Inc. Page 287

Mirantis Cloud Platform Deployment Guide

Deploy a Kubernetes cluster

After you complete the prerequisite steps described in Prerequisites, deploy your MCP
Kubernetes cluster manually using the procedure below.

To deploy the Kubernetes cluster:

1. Log in to the Salt Master node.

2. Update modules and states on all Minions:

salt "**' saltutil.sync_all

3. If you use autoregistration for the compute nodes, register all discovered compute nodes.
Run the following command on every compute node:

salt-call event.send "reclass/minion/classify" \
“{\"node_master_ip\": \"<config_host>\", \

\"node_os\": \"<os_codename>\", \

\"node_deploy_ip\": \"<node_deploy _network _ip>\", \
\"node_deploy iface\": \"<node_deploy_network_iface>\", \
\"node_control_ip\": \"<node_control_network_ip>\", \
\"node_control_iface\": \"<node_control_network_iface>\", \
\"node_sriov_ip\": \"<node_sriov_ip>\", \

\"node_sriov_iface\": \"<node_sriov_iface>\", \
\"node_tenant_ip\": \"<node_tenant_network_ip>\", \
\"node_tenant_iface\": \"<node_tenant_network_iface>\", \
\"node_external_ip\": \"<node_external_network_ip>\", \
\"node_external_iface\": \"<node_external_network_iface>\", \
\"node_baremetal_ip\": \"<node_baremetal_network_ip>\", \
\"node_baremetal_iface\": \"<node_baremetal _network_iface>\", \
\"node_domain\": \"<node_domain>\", \

\"node_cluster\": \"<cluster_ name>\", \

\"node_hostname\": \"<node_hostname>\"}"

Modify the parameters passed with the command above as required. The table below
provides the description of the parameters required for a compute node registration.

Parameter Description

config_host IP of the Salt Master node

0s_codename Operating system code name. Check the system response of
Isb_release -c for it

node _deploy netwo | Minion deploy network IP address
rk_ip

node_deploy netwo | Minion deploy network interface
rk_iface

©2025, Mirantis Inc. Page 288

Mirantis Cloud Platform Deployment Guide

node_control_netwo | Minion control network IP address

response of hostname -s for it

rk_ip

node_control_netwo | Minion control network interface

rk_iface

node_sriov_ip Minion SR-IOV IP address

node_sriov_iface Minion SR-IOV interface

node_tenant_networ | Minion tenant network IP address

k ip

node_tenant_networ | Minion tenant network interface

k_iface

node_external_netw | Minion external network IP address

ork_ip

node_external_netw | Minion external network interface

ork _iface

node_baremetal_net | Minion baremetal network IP address

work_ip

node_baremetal_net | Minion baremetal network interface

work_iface

node_domain Domain of a minion. Check the system response of hostname -d
for it

cluster_name Value of the cluster_name variable specified in the Reclass model.
See Basic deployment parameters for details

node_hostname Short hosthame without a domain part. Check the system

4. Log in to the Salt Master node.

5. Perform Linux system configuration to synchronize repositories and execute outstanding

system maintenance tasks:

salt '*' state.sls linux.system

6. Install the Kubernetes control plane:

1. Bootstrap the Kubernetes Master nodes:

salt -C 'l@kubernetes:master' state.sls linux
salt -C 'l@kubernetes:master' state.sls salt.minion
salt -C 'l@kubernetes:master' state.sls openssh,ntp

2. Create and distribute SSL certificates for services using the salt state and install etcd

with the SSL support:

©2025, Mirantis Inc.

Page 289

Mirantis Cloud Platform Deployment Guide

salt -C 'l@kubernetes:master' state.sls salt.minion.cert,etcd.server.service
salt -C 'l@etcd:server' cmd.run '. /var/lib/etcd/configenv && etcdctl cluster-health'

3. Install Keepalived:

salt -C 'l@keepalived:cluster' state.sls keepalived -b 1

4. Install HAProxy:

salt -C 'l@haproxy:proxy' state.sls haproxy
salt -C 'l@haproxy:proxy' service.status haproxy

5. Install Kubernetes:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons
salt -C 'l@kubernetes:master' state.sls kubernetes.pool

6. For the Calico setup:

1. Verify the Calico nodes status:

salt -C 'l@kubernetes:pool' cmd.run "calicoctl node status"

2. Set up NAT for Calico:

salt -C 'l@kubernetes:master' state.sls etcd.server.setup

7. Apply the following state to simplify namespaces creation:

salt -C 'l@kubernetes:master and *01*' state.sls kubernetes.master \
exclude=kubernetes.master.setup

8. Apply the following state:

salt -C 'l@kubernetes:master' state.sls kubernetes exclude=kubernetes.master.setup
9. Run the Kubernetes Master nodes setup:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.setup

10 Restart kubelet:

salt -C 'l@kubernetes:master' service.restart kubelet

7.Log in to any Kubernetes Master node and verify that all nodes have been registered
successfully:

©2025, Mirantis Inc. Page 290

Mirantis Cloud Platform Deployment Guide

kubectl get nodes

8. Deploy the Kubernetes Nodes:

1. Log in to the Salt Master node.

2. Bootstrap all compute nodes:

salt -C 'l@kubernetes:pool and not I@kubernetes:master' state.sls linux
salt -C 'l@kubernetes:pool and not I@kubernetes:master' state.sls salt.minion
salt -C 'l@kubernetes:pool and not I@kubernetes:master' state.sls openssh,ntp

3. Create and distribute SSL certificates for services and install etcd with the SSL support:

salt -C 'l@kubernetes:pool and not I@kubernetes:master' state.sls salt.minion.cert,etcd.server.service
salt -C 'l@etcd:server' cmd.run '. /var/lib/etcd/configenv && etcdctl cluster-health'

4. Install Kubernetes:
salt -C 'l@kubernetes:pool and not I@kubernetes:master' state.sls kubernetes.pool
5. Restart kubelet:

salt -C 'l@kubernetes:pool and not I@kubernetes:master' service.restart kubelet

After you deploy Kubernetes, deploy StackLight LMA to your cluster as described in Deploy
StackLight LMA.

©2025, Mirantis Inc. Page 291

Mirantis Cloud Platform Deployment Guide

Enable horizontal pod autoscaling

Using MCP, you can adjust the number of pod replicas without using an external orchestrator by
enabling the horizontal pod autoscaling feature in your MCP Kubernetes deployment. The
feature is based on observed CPU and/or memory utilization and can be enabled using the
metrics-server add-on.

To enable horizontal pod autoscaling:

1. While generating a deployment metadata model for your new MCP Kubernetes cluster as
described in Create a deployment metadata model, select the Kubernetes metrics server
enabled option in the Kubernetes Product parameters section of the Model Designer Ul.

2. If you have already generated a deployment metadata model without the metrics-server
parameter or to enable this feature on an existing Kubernetes cluster:

1. Open your Reclass model Git project repository on the cluster level.
2. In /kubernetes/control.yml, add the metrics-server parameters:
parameters:
kubernetes:

common:
addons:

metrics-server:
enabled: true

3. Select from the following options:

* If you are performing an initial deployment of your cluster, proceed with further
configuration as required. Pod autoscaling will be enabled during your Kubernetes
cluster deployment.

* If you are making changes to an existing cluster:

1. Log in to the Salt Master node.

2. Refresh your Reclass storage data:
salt-call state.sls reclass.storage
3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

4.0n a running Kubernetes cluster, verify that autoscaling works successfully using the
Official Kubernetes documentation.

©2025, Mirantis Inc. Page 292

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/

Mirantis Cloud Platform Deployment Guide

Enable Virtlet

You can enable Kubernetes to run virtual machines using Virtlet. Virtlet enables you to run
unmodified QEMU/KVM virtual machines that do not include an additional containerd layer as in
similar solutions in Kubernetes.

Virtlet requires the --feature-gates=MountPropagation=true feature gate to be enabled in the
Kubernetes API server and on all kubelet instances. This feature is enabled by default in MCP.
Using this feature, Virtlet can create or delete network namespaces assigned to VM pods.

Caution!

Virtlet with OpenContrail is available as technical preview. Use such configuration for
testing and evaluation purposes only.

©2025, Mirantis Inc. Page 293

Mirantis Cloud Platform Deployment Guide

Deploy Virtlet

You can deploy Virtlet on either new or existing MCP cluster using the procedure below. By
default, Virtlet is deployed on all Kubernetes Nodes (cmp).

To deploy Virtlet on a new MCP cluster:

1. When generating a deployment metadata model using the ModelDesigner Ul, select the
Virtlet enabled check box in the Kubernetes Product parameters section.

2. Open your Git project repository.
3. In classes/cluster/<cluster-name>/kubernetes/init.yml, verify that Virtlet is enabled:

parameters:
_param:
kubernetes_virtlet_enabled: True

4. Optional. In classes/cluster/<cluster-name>/kubernetes/compute.yml, modify the
kubernetes:common:addons:virtlet: parameters as required to define the Virtlet namespace
and image path as well as the number of compute nodes on which you want to enable
Virtlet. For example:

parameters:
kubernetes:
common:
addons:
virtlet:
enabled: true
namespace: kube-system
image: mirantis/virtlet:latest

5.1f your networking system is OpenContrail, add the following snippet to
classes/cluster/<cluster-name>/opencontrail/compute.yml:

kubernetes:
pool:
network:
hash: 77169cdadb80a5e33e9d9fe093ed0d99

Proceed with further MCP cluster configuration. Virtlet will be automatically deployed during the
Kubernetes cluster deployment.

To deploy Virtlet on an existing MCP cluster:
1. Open your Git project repository.
2. In classes/cluster/<cluster-name>/kubernetes/compute.yml, add the following snippet:

parameters:
kubernetes:

©2025, Mirantis Inc. Page 294

Mirantis Cloud Platform Deployment Guide

common:
addons:
virtlet:
enabled: true
namespace: kube-system
image: mirantis/virtlet:latest

Modify the kubernetes:common:addons:virtlet: parameters as required to define the Virtlet
namespace and image path as well as the number of compute nodes on which you want to
enable Virtlet.

3.If your networking system is OpenContrail, add the following snippet to
classes/cluster/<cluster-name>/opencontrail/compute.yml:

kubernetes:
pool:
network:
hash: 77169cdadb80a5e33e9d9fe093ed0d99
4. Commit and push the changes to the project Git repository.
5. Log in to the Salt Master node.

6. Update your Salt formulas and the system level of your repository:

1. Change the directory to /srv/salt/reclass.
2. Run the git pull origin master command.
3. Run the salt-call state.sls salt.master command.

4. Run the salt-call state.sls reclass command.
7. Apply the following states:

salt -C 'l@kubernetes:pool and not I@kubernetes:master' state.sls kubernetes.pool
salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons
salt -C 'l@kubernetes:master' state.sls kubernetes.master.setup

Seealso

Verify Virtlet after deployment

©2025, Mirantis Inc. Page 295

Mirantis Cloud Platform Deployment Guide

Verify Virtlet after deployment

After you enable Virtlet as described in Deploy Virtlet, proceed with the verification procedure
described in this section.

To verify Virtlet after deployment:
1. Verify a basic pod startup:
1. Start a sample VM:

kubectl create -f https://raw.githubusercontent.com/Mirantis/virtlet/v1.4.4/examples/cirros-vm.yaml
kubectl get pods --all-namespaces -o wide -w

2. Connect to the VM console:

kubectl attach -it cirros-vm

If you do not see a command prompt, press Enter.

Example of system response:

login as 'cirros' user. default password: 'gosubsgo’. use 'sudo' for root.
cirros-vm login: cirros
Password:

$

To quit the console, use the ~] key combination.
2. Verify SSH access to the VM pod:

1. Download the vmssh.sh script with the test SSH key:
wget https://raw.githubusercontent.com/Mirantis/virtlet/v1.4.4/examples/{vmssh.sh,vmkey}

chmod +x vmssh.sh
chmod 600 vmkey

Note
The vmssh.sh script requires kubectl to access a cluster.

2. Access the VM pod using the vmssh.sh script:

©2025, Mirantis Inc. Page 296

Mirantis Cloud Platform Deployment Guide

.Jvmssh.sh cirros@cirros-vm

3. Verify whether the VM can access the Kubernetes cluster services:

1. Verify the DNS resolution of the cluster services:

nslookup kubernetes.default.svc.cluster.local

2. Verify the service connectivity:

curl -k https://kubernetes.default.svc.cluster.local

Note

The above command will raise an authentication error. Ignore this error.

3. Verify Internet access from the VM. For example:

curl -k https://google.com
ping -c 1 8.8.8.8

©2025, Mirantis Inc.

Page 297

Mirantis Cloud Platform Deployment Guide

Enable the MetallLB support

MetallLB is a Kubernetes add-on that provides a network load balancer for bare metal Kubernetes
clusters using standard routing protocols. It provides external IP addresses to the workloads
services, for example, NGINX, from the pool of addresses defined in the MetalLB configuration.

To enable MetallLB support on a bare metal Kubernetes cluster:

1. While generating a deployment metadata model for your new MCP Kubernetes cluster as
described in Create a deployment metadata model, select the Kubernetes metallb enabled
option in the Infrastructure parameters section of the Model Designer Ul.

2. If you have already generated a deployment metadata model without the MetallLB
parameter or to enable this feature on an existing Kubernetes cluster:

1. Open your Reclass model Git project repository on the cluster level.

2. In /kubernetes/control.yml, add the MetalLB parameters. For example:

parameters:
kubernetes:
common:
addons:

metallb:
enabled: true
addresses:
-172.16.10.150-172.16.10.180
-172.16.10.192/26

For the addresses parameter, define the required pool of IP addresses.
3. Select from the following options:

* If you are performing an initial deployment of your cluster, proceed with further
configuration as required. MetalLB will be installed during your Kubernetes cluster
deployment.

* If you are making changes to an existing cluster:

1. Log in to the Salt Master node.

2. Refresh your Reclass storage data:
salt-call state.sls reclass.storage
3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons
To verify MetalLB after deployment:

1. Log in to any Kubernetes Master node.

©2025, Mirantis Inc. Page 298

Mirantis Cloud Platform Deployment Guide

2. Verify that the MetalLB pods are created:

kubectl get pods --namespace metallb-system

Example of system response:

NAME READY STATUS RESTARTS AGE
controller-79876bc7cc-8z2bh 1/1 Running 0 20h
speaker-ckn49 1/1 Running 0 21h
speaker-dr65f 1/1 Running 0 21h

3. Create two NGINX pods that listen on port 80:
kubectl run my-nginx --image=nginx --replicas=2 --port=380
4. Expose the NGINX pods to the Internet:
kubectl expose deployment my-nginx --port=80 --type=LoadBalancer

5. Verify that NGINX obtained an EXTERNAL-IP address from the pool of addresses defined in
the MetallLB configuration.

kubectl get svc

Example of system response:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterlP 10.254.0.1 <none> 443/TCP 23h
my-nginx LoadBalancer 10.254.96.233 172.16.10.150 80:31983/TCP 7m

Seealso

* MCP Reference Architecture: MetalLB support

e Enable the NGINX Ingress controller

©2025, Mirantis Inc. Page 299

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/kubernetes-cluster-plan/kubernetes-networking-plan/metal-lb.html

Mirantis Cloud Platform Deployment Guide

Enable the NGINX Ingress controller

The NGINX Ingress controller provides load balancing, SSL termination, and name-based virtual
hosting. You can enable the NGINX Ingress controller if you use MetalLB in your MCP
Kubernetes-based cluster.

To enable the NGINX Ingress controller on a Kubernetes cluster:

1. While generating a deployment metadata model for your new MCP Kubernetes cluster as
described in Create a deployment metadata model, select the following options in the
Infrastructure parameters section of the Model Designer Ul:

* Kubernetes ingressnginx enabled

* Kubernetes metallb enabled as the Kubernetes network engine

2. If you have already generated a deployment metadata model without the NGINX Ingress
controller parameter or to enable this feature on an existing Kubernetes cluster:

1. Enable MetallLB as described in Enable the MetalLB support.
2. Open your Reclass model Git project repository on the cluster level.
3. In /kubernetes/control.yml, enable the NGINX Ingress controller:

parameters:
kubernetes:
common:
addons:

ingress-nginx:
enabled: true

Note

If required, you can change the default number of replicas for the NGINX Ingress
controller by adding the kubernetes_ingressnginx_controller_replicas parameter
to /kubernetes/control.yml. The default value is 1.

3. Select from the following options:

* If you are performing an initial deployment of your cluster, proceed with further
configuration as required. The NGINX Ingress controller will be installed during your
Kubernetes cluster deployment.

* If you are making changes to an existing cluster:

1. Log in to the Salt Master node.

2. Refresh your Reclass storage data:

©2025, Mirantis Inc. Page 300

Mirantis Cloud Platform Deployment Guide

salt-call state.sls reclass.storage

3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

©2025, Mirantis Inc. Page 301

Mirantis Cloud Platform Deployment Guide

Enable an external Ceph RBD storage

You can connect your Kubernetes cluster to an existing external Ceph RADOS Block Device
(RBD) storage by enabling the corresponding feature in your new or existing Kubernetes cluster.

To enable an external Ceph RBD storage on a Kubernetes cluster:

1. While generating a deployment metadata model for your new MCP Kubernetes cluster as
described in Create a deployment metadata model, select the Kubernetes rbd enabled
option in the Infrastructure parameters section and define the Kubernetes RBD parameters
in the Product parameters section of the Model Designer Ul.

2. If you have already generated a deployment metadata model without the Ceph RBD storage
parameters or to enable this feature on an existing Kubernetes cluster:

1. Open your Reclass model Git project repository on the cluster level.

2. In /kubernetes/control.yml, add the Ceph RBD cluster parameters. For example:

parameters:

kubernetes:
common:
addons:
storageclass:
rbd:
enabled: True
default: True
provisioner: rbd
name: rbd
user_id: kubernetes
user_key: AQAO005bGqtPEXAABGSPtThpt5s+iq97KAE+WQ==
monitors: cmn01:6789,cmn02:6789,cmn03:6789
pool: kubernetes
fstype: ext4

3. Select from the following options:

* On a new Kubernetes cluster, proceed to further cluster configuration. The external
Ceph RBD storage will be enabled during the Kubernetes cluster deployment. For the
deployment details, see: Deploy a Kubernetes cluster.

¢ On an existing Kubernetes cluster:

1. Log in to the Salt Master node.

2. Update your Salt formulas and the system level of your repository:

1. Change the directory to /srv/salt/reclass.

2. Run the following commands:

©2025, Mirantis Inc. Page 302

Mirantis Cloud Platform Deployment Guide

git pull origin master
salt-call state.sls salt.master
salt-call state.sls reclass

3. Apply the following state:
salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons

Enable Helm support

Warning

This feature is available starting from the MCP 2019.2.3 maintenance update. Before
enabling the feature, follow the steps described in Apply maintenance updates.

Helm is a package manager for Kubernetes that allows you to configure, package, and deploy
applications on a Kubernetes cluster.

The Helm packaging format is called charts. Charts are packages of the pre-configured
Kubernetes resources.

To enable Helm support on a bare metal Kubernetes cluster:

1. While generating a deployment metadata model for your new MCP Kubernetes cluster as
described in Create a deployment metadata model, select the Kubernetes helm enabled
option in the Infrastructure parameters section of the Model Designer Ul.

2. If you have already generated a deployment metadata model without the Helm parameter
or to enable this feature on an existing Kubernetes cluster:

1. Open your Git project repository with the Reclass model on the cluster level.

2. In /kubernetes/common/init.yml, add the Helm parameters:

parameters:
kubernetes:
common:
addons:

helm:
enabled: true

3. Select from the following options:

e If you are performing an initial deployment of your cluster, proceed with further
configuration as required. Helm will be installed during your Kubernetes cluster
deployment.

©2025, Mirantis Inc. Page 303

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-3/mu-3-apply-updates.html

Mirantis Cloud Platform Deployment Guide

* If you are making changes to an existing cluster:

1. Log in to the Salt Master node.

2. Refresh your Reclass storage data:
salt-call state.sls reclass.storage
3. Apply the kube-addons state:

salt -C 'l@kubernetes:master' state.sls kubernetes.master.kube-addons
To verify Helm after deployment:

1. Log in to any Kubernetes Master node.

2. Verify that the Tiller pod is created:

kubectl get pods --namespace kube-system

Example of system response:

NAME READY STATUS RESTARTS AGE
tiller-deploy-79876bc7dd-7z2bh 1/1 Running 0 10h

3. Once the Tiller pod is running, run the following command:

helm version

The output must contain both the Helm client and server versions:
Example of system response:

Client: &version.Version{SemVer:"v2.12.2", GitCommit:"7d2b0c73d734f6586ed222a567c5d103fed435be", GitTreeState:"clean"}
Server: &version.Version{SemVer:"v2.12.2", GitCommit:"7d2b0c73d734f6586ed222a567c5d103fed435be", GitTreeState:"clean"}

Seealso

* Helm Git project

¢ Helm official documentation

©2025, Mirantis Inc. Page 304

https://github.com/helm/helm
https://helm.sh/docs/

Mirantis Cloud Platform Deployment Guide

Deploy OpenContrail manually

OpenContrail is a component of MCP that provides overlay networking built on top of physical
IP-based underlay network for cloud environments. OpenContrail provides more flexibility in
terms of network hardware used in cloud environments comparing to other enterprise-class
networking solutions.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

©2025, Mirantis Inc. Page 305

Mirantis Cloud Platform Deployment Guide

Deploy OpenContrail

This section instructs you on how to manually deploy OpenContrail 4.1 on your OpenStack-based
MCP cluster.

Caution!

The OpenContrail versions support status:

* OpenContrail 4.1 is fully supported.

* OpenContrail 4.0 is deprecated and not supported for new deployments since MCP
maintenance update 2019.2.4.

* OpenContrail 3.2 is not supported for new deployments.

©2025, Mirantis Inc. Page 306

Mirantis Cloud Platform Deployment Guide

Deploy OpenContrail 4.1 for OpenStack

This section provides instructions on how to manually deploy OpenContrail 4.1 on your
OpenStack-based MCP cluster.

To deploy OpenContrail 4.1 on an OpenStack-based MCP cluster:
1. Log in to the Salt Master node.

2. Run the following basic states to prepare the OpenContrail nodes:

salt -C 'ntw* or nal*' saltutil.refresh_pillar
salt -C 'l@opencontrail:database' saltutil.sync_all
salt -C 'l@opencontrail:database’' state.sls salt.minion,linux,ntp,openssh

3. Deploy and configure Keepalived and HAProxy:

salt -C 'l@opencontrail:database' state.sls keepalived,haproxy

4. Deploy and configure Docker:

salt -C 'l@opencontrail:database' state.sls docker.host

5. Create configuration files for OpenContrail:

salt -C 'l@opencontrail:database' state.sls opencontrail exclude=opencontrail.client

6. Start the OpenContrail Docker containers:

salt -C 'l@opencontrail:database’' state.sls docker.client

7. Verify the status of the OpenContrail service:

salt -C 'l@opencontrail:database' cmd.run 'doctrail all contrail-status'

In the output, the services status should be active or backup.

Note

It may take some time for all services to finish initializing.

8. Configure the OpenContrail resources:
salt -C 'l@opencontrail:client and not I@opencontrail:compute' state.sls opencontrail.client

9. Apply the following states to deploy the OpenContrail vRouters:

©2025, Mirantis Inc. Page 307

Mirantis Cloud Platform Deployment Guide

salt -C 'cmp*' saltutil.refresh_pillar

salt -C 'l@opencontrail:compute' saltutil.sync_all

salt -C 'l@opencontrail:compute' state.highstate exclude=opencontrail.client
salt -C 'l@opencontrail:compute' cmd.run 'reboot’

salt -C 'l@opencontrail:compute' state.sls opencontrail.client

10 After you deploy an OpenContrail-based MCP cluster:

1. Navigate to the OpenContrail web Ul as described in MCP Operations Guide: Access the
OpenContrail web UL.

2. Verify that Monitor > Infrastructure > Dashboard displays actual information about all
OpenContrail nodes configured and deployed on your MCP cluster.

Seealso
MCP 2019.2.3 Maintenance Update: Known issues

Seealso

OpenContrail limitations

Seealso

* OpenContrail limitations
* Troubleshoot OpenContrail
* OpenContrail operations

* Plan OpenContrail networking

©2025, Mirantis Inc. Page 308

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations/access-web-ui.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations/access-web-ui.html
https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-3/mu-3-known.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/opencontrail-plan/contrail-limitations.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/opencontrail-plan/contrail-limitations.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/tshooting/tshoot-contrail.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/opencontrail-plan.html

Mirantis Cloud Platform Deployment Guide

Deploy compute nodes

Provisioning and deploying of the OpenStack or Kubernetes compute nodes (cmp00X) is
relatively straightforward and should be performed after the bare-metal provisioning through
MAAS is done. You can run all states at once. Though, this has to be done multiple times with a
reboot involved for changes to network configuration to take effect. The ordering of

dependencies is not yet orchestrated.

To deploy a compute node:

1. Log in to the Salt Master node.
2. Verify that the new machines have connectivity with the Salt Master node:

salt 'cmp*' test.ping
3. Refresh the deployed pillar data:

salt 'cfg*' state.sls reclass.storage

4. Apply the Salt data sync and base states for Linux, NTP, OpenSSH, and Salt for the target
nodes:

salt 'cmp*' saltutil.sync_all
salt 'cmp*' saltutil.refresh_pillar
salt 'cmp*' state.sls linux,ntp,openssh,salt

Note

Refreshing the pillar data must be done every time you apply the reclass state on the
Salt Master node.

5. Apply all states for the target nodes:

salt 'cmp*' state.highstate

Note

You may need to apply the states multiple times to get a successful deployment. If
after two runs you still have errors, reboot the target nodes and apply the states

again.

©2025, Mirantis Inc. Page 309

Mirantis Cloud Platform Deployment Guide

Note

You may have an error stating that iptables is down. Ignore this error.

6. Reboot the target nodes.

7. Discover compute hosts:

salt 'ctl01*' state.sls nova.controller

After you deploy compute nodes, proceed with Deploy StackLight LMA if required.

©2025, Mirantis Inc. Page 310

Mirantis Cloud Platform Deployment Guide

Deploy the DevOps Portal manually

The DevOps Portal collects a comprehensive set of data about the cloud, offers visualization
dashboards, and enables the operator to interact with a variety of tools.

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

This section instructs you on how to manually deploy the DevOps Portal with the Operations
Support System (OSS) services available. Eventually, you will be able to access the DevOps
Portal at the VIP address of the deployment on port 8800 with the following services installed:

* Push Notification service

* Runbook Automation service

* Security Audit service

* Cleanup service

* PostgreSQL database management system
* Elasticsearch back end

* Gerrit and Jenkins as part of the CI/CD deployment, will be available from the DevOps Portal
web Ul

* OpenLDAP and aptly as part of the CI/CD deployment

Caution!

Before you can deploy the DevOps Portal, you must complete the steps described in
Deploy CI/CD.

MCP enables you to configure the OSS services metadata in a Reclass model using Cookiecutter.
Therefore, if you are performing the initial deployment of your MCP environment, you should
have already configured your deployment model with the OSS parameters during the
create-deployment-model-ui stage considering the dependencies described in MCP Reference
Architecture: Dependencies between services. If so, skip the procedure described in Configure
services in the Reclass model and proceed to Deploy OSS services manually.

©2025, Mirantis Inc. Page 311

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/stacklight/devops-portal/dependencies-between-services.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/stacklight/devops-portal/dependencies-between-services.html

Mirantis Cloud Platform Deployment Guide

Configure services in the Reclass model

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

If the Reclass model of your deployment does not include metadata for OSS services, you must
define it in the Reclass model before proceeding with the deployment of the DevOps portal.

To configure OSS services in the Reclass model:

1.In the init.yml file in the
/srv/salt/reclass/classes/cluster/${ param:cluster name}/cicd/control/ directory, define the
required classes.

The following code snippet contains all services currently available. To configure your
deployment for a specific use case, comment out the services that are not required:

classes:
GlusterFS
- system.glusterfs.server.volume.devops_portal
- system.glusterfs.server.volume.elasticsearch
- system.glusterfs.server.volume.mongodb
- system.glusterfs.server.volume.postgresq|l
- system.glusterfs.server.volume.pushkin
- system.glusterfs.server.volume.rundeck
- system.glusterfs.server.volume.security_monkey

- system.glusterfs.client.volume.devops_portal

- system.glusterfs.client.volume.elasticsearch

- system.glusterfs.client.volume.mongodb

- system.glusterfs.client.volume.postgresq|

- system.glusterfs.client.volume.pushkin

- system.glusterfs.client.volume.rundeck

- system.glusterfs.client.volume.security_monkey

Docker services

- system.docker.swarm.stack.devops_portal

- system.docker.swarm.stack.elasticsearch

- system.docker.swarm.stack.janitor_monkey

- system.docker.swarm.stack.postgresq|

- system.docker.swarm.stack.pushkin

- system.docker.swarm.stack.rundeck

- system.docker.swarm.stack.security_monkey

Docker networks

©2025, Mirantis Inc. Page 312

Mirantis Cloud Platform Deployment Guide

- system.docker.swarm.network.runbook

HAProxy

- system.haproxy.proxy.listen.oss.devops_portal

- system.haproxy.proxy.listen.oss.elasticsearch

- system.haproxy.proxy.listen.oss.janitor_ monkey

- system.haproxy.proxy.listen.oss.mongodb

- system.haproxy.proxy.listen.oss.postgresql

- system.haproxy.proxy.listen.oss.pushkin

- system.haproxy.proxy.listen.oss.rundeck

- system.haproxy.proxy.listen.oss.security_monkey

0SS tooling

- system.devops_portal.service.elasticsearch

- system.devops_portal.service.gerrit

- system.devops_portal.service.janitor_monkey

- system.devops_portal.service.jenkins

- system.devops_portal.service.pushkin

- system.devops_portal.service.rundeck

- system.devops_portal.service.security_monkey

Rundeck
- system.rundeck.client.runbook

2.1n the init.yml file in the
/srv/salt/reclass/classes/cluster/${ param:cluster name}/cicd/control/ directory, define the
required parameters:

* For the Runbook Automation service, define:

parameters:
_param:
rundeck_runbook_public_key: <SSH PUBLIC KEY>
rundeck_runbook_private_key: |
<SSH_PRIVATE_KEY>

* For the Security Audit service, define:

parameters:
_param:
security_monkey_openstack:
username: <USERNAME>
password: <PASSWORD>
auth_url: <KEYSTONE_AUTH_ENDPOINT>

The configuration for the Security Audit service above will use the Administrator
account to access OpenStack with the admin tenant. To configure the Security Audit

©2025, Mirantis Inc. Page 313

Mirantis Cloud Platform Deployment Guide

service deployment for a specific tenant, define the security monkey openstack
parameter as follows:

parameters:
_param:

security_monkey_openstack:
os_account_id: <OS _ACCOUNT_ID>
os_account_name: <OS_ACCOUNT _NAME>
username: <USERNAME>
password: <PASSWORD>
auth_url: <KEYSTONE_AUTH_ENDPOINT>
project_domain_name: <PRO] DOMAIN_NAME>
project_name: <PROJ NAME>
user_domain_name: <USER DOMAIN_NAME>

Warning

The project_name: <PROJ_NAME> parameter specifies a project for the Keystone
authentication in the Security Audit service. Therefore, the service will not listen
by projects, but synchronize issues from all projects in the current environment
with the DevOps Portal using the specified project to authenticate.

 For the Janitor service, define:

parameters:
_param:
janitor_monkey_openstack:
username: <USERNAME>
password: <PASSWORD>
auth_url: <KEYSTONE_AUTH_ENDPOINT>

The configuration for the Janitor service above will use the Administrator account to
access OpenStack with the admin tenant. To configure the Security Audit service
deployment for a specific tenant, define the janitor monkey openstack parameter as
follows:

parameters:
_param:
janitor_monkey_openstack:
username: <USERNAME>
password: <PASSWORD>
auth_url: <KEYSTONE_AUTH_ENDPOINT>
project_ domain_name: <PROJ DOMAIN_NAME>
project_ name: <PROJ_ NAME>

©2025, Mirantis Inc. Page 314

Mirantis Cloud Platform Deployment Guide

3.1n the master.yml file in the
/srv/salt/reclass/classes/cluster/${ param:cluster name}/cicd/control/ directory, configure
classes and parameters as required:

* Define classes for the DevOps Portal and services as required:

classes:
DevOps Portal
- service.devops_portal.config

Elasticsearch

- system.elasticsearch.client

- system.elasticsearch.client.index.pushkin

- system.elasticsearch.client.index.janitor_monkey

PostgreSQL

- system.postgresql.client.pushkin

- system.postgresql.client.rundeck

- system.postgresql.client.security_monkey

Runbook Automation
- system.rundeck.server.docker
- system.rundeck.client

» Define parameters for the Runbooks Automation service, if required:

parameters:
_param:
rundeck_db_user: ${ param:rundeck postgresql username}
rundeck_db_password: ${ param:rundeck postgresql password}
rundeck_db_host: ${ param:cluster_vip_address}
rundeck_postgresql_host: ${ param:cluster_vip_address}
rundeck_postgresql_port: ${ param:haproxy_postgresql_bind port}

4. Push all changes of the model to the dedicated project repository.

5. Verify that the metadata of the Salt Master node contains all the required parameters:

reclass --nodeinfo=$SALT_MASTER_FQDN.$ENV_DOMAIN

salt '*' saltutil.refresh_pillar

salt '*' saltutil.sync_all

salt '$SALT_MASTER_FQDN.$ENV_DOMAIN' pillar.get devops_portal

For example, for the ci01 node on the cicd-lab-dev.local domain run:

reclass --nodeinfo=ciO1.cicd-lab-dev.local
salt "*' saltutil.refresh_pillar

©2025, Mirantis Inc. Page 315

Mirantis Cloud Platform Deployment Guide

salt '*' saltutil.sync_all
salt 'ciOl.cicd-lab-dev.local' pillar.get devops_portal

©2025, Mirantis Inc. Page 316

Mirantis Cloud Platform Deployment Guide

Deploy OSS services manually

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

Before you proceed with the services installation, verify that you have updated the Reclass
model accordingly as described in Configure services in the Reclass model.

To deploy the DevOps portal:

1. Log in to the Salt Master node.
2. Refresh Salt pillars and synchronize Salt modules on all Salt Minion nodes:

salt '*' saltutil.refresh_pillar
salt '*' saltutil.sync_all

3. Set up GlusterFsS:

salt -b 1 -C 'l@glusterfs:server' state.sls glusterfs.server

Note

The -b option specifies the explicit number of the Salt Minion nodes to apply the state
at once to. Therefore, you will get a more stable configuration during the
establishment of peers between the services.

4. Mount the GlusterFS volume on Docker Swarm nodes:
salt -C 'l@glusterfs:client' state.sls glusterfs.client
5. Verify that the volume is mounted on Docker Swarm nodes:
salt "*' cmd.run 'systemctl -a|grep "GlusterFS File System"|grep -v mounted'
6. Configure HAProxy and Keepalived for the load balancing of incoming traffic:
salt -C "l@haproxy:proxy" state.sls haproxy,keepalived

7. Set up Docker Swarm:

©2025, Mirantis Inc. Page 317

Mirantis Cloud Platform Deployment Guide

salt -C 'l@docker:host' state.sls docker.host

salt -C 'l@docker:swarm:role:master' state.sls docker.swarm
salt -C 'l@docker:swarm:role:master' state.sls salt

salt -C 'l@docker:swarm:role:master' mine.flush

salt -C 'l@docker:swarm:role:master' mine.update

salt -C 'l@docker:swarm' state.sls docker.swarm

salt -C 'l@docker:swarm:role:master' cmd.run 'docker node Is'

8. Configure the OSS services:

salt -C 'l@devops_portal:config' state.sls devops_portal.config
salt -C 'l@rundeck:server' state.sls rundeck.server

Note

In addition to setting up the server side for the Runbook Automation service, the
rundeck.server state configures users and API tokens.

9. Prepare aptly before deployment:

salt -C 'l@aptly:publisher' saltutil.refresh_pillar
salt -C 'l@aptly:publisher' state.sls aptly.publisher

10 Apply the docker.client state:

| salt -C 'l@docker:swarm:role:master' state.sls docker.client
11 Prepare Jenkins for the deployment:

| salt -C 'l@docker:swarm' cmd.run 'mkdir -p /var/lib/jenkins'
12 Identify the IP address on which HAProxy listens for stats:

HAPROXY_STATS_IP=$%$(salt -C 'l@docker:swarm:role:master' \
--out=newline_values_only \
pillar.fetch haproxy:proxy:listen:stats:binds:address)

©2025, Mirantis Inc. Page 318

Mirantis Cloud Platform Deployment Guide

Caution!
You will use the HAPROXY_STATS IP variable to verify that the Docker-based service
you are going to deploy is up in stats of the HAProxy service.
13 Verify that aptly is UP in stats of the HAProxy service:
| curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep aptly
14 Deploy aptly:
| salt -C 'l@aptly:server' state.sls aptly
15 Verify that OpenLDAP is UP in stats of the HAProxy service:
| curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep openldap
16 Deploy OpenLDAP:
| salt -C 'l@openldap:client' state.sls openldap
17 Verify that Gerrit is UP in stats of the HAProxy service:
| curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep gerrit
18 Deploy Gerrit:

salt -C 'l@gerrit:client' state.sls gerrit

Note

The execution of the command above may hang for some time. If it happens, re-apply
the state after its termination.

19 Verify that Jenkins is UP in stats of the HAProxy service:

curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep jenkins

20 Deploy Jenkins:

©2025, Mirantis Inc. Page 319

Mirantis Cloud Platform Deployment Guide

salt -C 'l@jenkins:client' state.sls jenkins

Note

The execution of the command above may hang for some time. If it happens, re-apply
the state after its termination.

21 Verify that the process of bootstrapping of the PostgreSQL container has been finalized:
| docker service logs postgresql _db | grep "ready to accept"

22 Verify that PostgreSQL is UP in stats of the HAProxy service:
| curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep postgresql

23 Initialize OSS services databases by setting up the PostgreSQL client:

salt -C 'l@postgresql:client' state.sls postgresql.client

The postgresql.client state application will return errors due to cross-dependencies between
the docker.stack and postgresqgl.client states. To configure integration between Push
Notification and Security Audit services:

1. Verify that Push Notification service is UP in stats of the HAProxy service:
curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep pushkin
2. Re-apply the postgresql.client state:

salt -C 'l@postgresql:client' state.sls postgresql.client

24 Verify that Runbook Automation is UP in stats of the HAProxy service:

| curl -s "http://${HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep rundeck
25 Deploy Runbook Automation:

| salt -C 'l@rundeck:client' state.sls rundeck.client
26 Verify that Elasticksearch is UP in stats of the HAProxy service:

curl -s "http://$ {HAPROXY_STATS IP}:9600/haproxy?stats;csv" | grep elasticsearch

©2025, Mirantis Inc. Page 320

Mirantis Cloud Platform Deployment Guide

27 Deploy the Elasticsearch back end:

salt -C 'l@elasticsearch:client' state.sls elasticsearch.client

Due to index creation, you may need to re-apply the state above.

28 If required, generate documentation and set up proxy to access it. The generated content
. will reflect the current configuration of the deployed environment:

salt -C 'l@sphinx:server' state.sls 'sphinx'

Execute 'salt-run' on salt-master

salt-run state.orchestrate sphinx.orch.generate_doc || echo "Command execution failed"
salt -C 'l@nginx:server' state.sls 'nginx'

©2025, Mirantis Inc. Page 321

Mirantis Cloud Platform Deployment Guide

Build a custom image of the DevOps Portal

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

For testing purposes, you may need to create a custom Docker image to use it while deploying
the DevOps Portal.

To build a custom Docker image:

1. Before you build the image and upload it to Sandbox, clone the source code of DevOps
Portal:

git clone https://gerrit.mcp.mirantis.net/oss/devops-portal
cd devops-portal

2. Build your image:

docker build --rm -f docker/Dockerfile -t \
docker-sandbox.sandbox.mirantis.net/[USERNAME]/oss/devops-portal:latest .

3. Push the image into a specific prefix on Sandbox:

docker push docker-sandbox.sandbox.mirantis.net/[USERNAME]/oss/devops-portal:latest

©2025, Mirantis Inc. Page 322

Mirantis Cloud Platform Deployment Guide

Configure Salesforce integration for OSS manually

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

The Push Notification services can automatically create tickets in Saleforce based on the alarms
triggered by the issues that are found by Prometheus Alertmanager. Moreover, the Push
Notification service ensures the following:

* The Salesforce tickets are not duplicated. When the same alarm gets triggered multiple
times, only one Saleseforce ticket is created per the alarm.

* The Push Notification service creates one entry in a SalesForce feed, that is a Feedltem, per
alarm with a link to an existing ticket. This enables the users to track important changes as
well as close the ticket which has been fixed.

Warning

This section describes how to manually configure the Push Notification service Reclass
metadata to integrate with Salesforce in an existing OSS deployment. Therefore, if you
want to configure the Salesforce integration, perform the procedure below.

Otherwise, if you are performing the initial deployment of your MCP environment, you
should have already configured your deployment model with the Salesforce (SFDC)
parameters as described in OSS parameters. In this case, skip this section.

To configure Salesforce integration for OSS manually:
1. Collect the following data from Saleforce:

* auth_url
The URL of a Salesforce instance. The same for the MCP users.
e username

The username in Salesforce used for integration; all Salesforce cases are created
by this user. The unique identifier for an MCP user.

¢ password

The password used for logging in to the Support Customer Portal. The unique
identifier for an MCP user.

* environment
The Cloud ID in Salesforce. The unique identifier for an MCP user.

©2025, Mirantis Inc. Page 323

Mirantis Cloud Platform Deployment Guide

The detailed information on a Salesforce Cloud is provided by either Mirantis
support engineers or customer depending on whom the Cloud object was created

by.
e consumer_key
The Consumer Key in Salesforce required for Open Authorization (OAuth).

* consumer_secret
The Consumer Secret from Salesforce required for OAuth.

* organization_id
The Salesforce Organization ID in Salesforce required for OAuth.
2. Verify that the following services are properly configured and deployed:

 Elasticsearch
* PostgreSQL

Note
For the configuration and deployment details, see:

* Configure services in the Reclass model

* Deploy OSS services manually

3.In the classes/cluster/${ _param:cluster name}/oss/client.yml| file of your deployment
model, define the system.postgresql.client.sfdc class :

classes:
- system.postgresql.client.sfdc

4. In the /srv/salt/reclass/classes/cluster/${ param:cluster name}/oss/server.yml file, define
the following parameters:

parameters:
_param:

SFDC configuration
sfdc_auth_url: <AUTH_URL>
sfdc_username: <USERNAME>
sfdc_password: <PASSWORD>
sfdc_consumer_key: <CONSUMER _KEY>
sfdc_consumer_secret: <CONSUMER_SECRET>
sfdc_organization_id: <ORGANIZATION_ID>
sfdc_sandbox_enabled: True

©2025, Mirantis Inc. Page 324

Mirantis Cloud Platform Deployment Guide

Note

Sandbox environments are isolated from the production Salesforce clouds. Set the
sfdc_sandbox_enabled to True to use Salesforce sandbox for testing and evaluation
purposes. Verify that you specify the correct sandbox-url value in the sfdc_auth_url
parameter. Otherwise, set the parameter to False.

5. Push all changes of the model to the dedicated project repository.

6. Refresh pillars and synchronize Salt modules:

salt "*' saltutil.refresh_pillar
salt "*' saltutil.sync_modules

7. If you have the running pushkin docker stack, remove it and apply the following Salt states:

salt -C 'l@docker:swarm:role:master' state.sls docker.client
salt -C 'l@postgresql:client' state.sls postgresql.client

8. To test whether the Push Notification service is configured properly:

1. View the list of all applications, preconfigured in the Push Notification service, and their
details by checking the system response for the following command:

curl -D - http://${HAPROXY_STATS IP}:8887/apps

Example of system response:
{"applications": [{"login_id": 11, "enabled": true, "id": 1, "name": "notify_service"}1}
2. Send the test request to the service using the following command:

curl -i -XPOST -H 'Content-Type: application/json" <PUSH_NOTIFICATION_ENDPOINT> -d \
‘{"notifications": [{"login_id" : <APP_LOGIN_ID>, \
"title" : "Salesforce test notification”, \
"content" : {"handler": "sfdc","payload": \
{"status": "<NOTIFICATION_STATUS>","priority": "<NOTIFICATION_PRIORITY>"\
"subject": "<NOTIFICATION_SUBJECT>","host": "<EXAMPLE.NET>"\
"service": "<SERVICE>","environment": "<ENVIRONMENT _ID>",\
"body": "<NOTIFICATION_ITEM_BODY>"}, \
"application_id": <APP_ID>}}1}'

The table below provides the desription of the parameters required for the test
request.

©2025, Mirantis Inc. Page 325

Mirantis Cloud Platform Deployment Guide

Parameter Description

login_id The Login ID of an application on behalf of which the
notification will be send. Define the parameter according
to the login_id parameter value retrieved during the
previous step.

environment The Cloud ID in Salesforce which the notification will be
send to. Define the parameter according to the
environment parameter value collected during the first
step of this procedure.

application_id The ID of an application on behalf of which the
notification will be send. Define the parameter according
to the id parameter value retrieved during the previous
step.

Example:

curl -i -XPOST -H 'Content-Type: application/json' http://$ {HAPROXY_STATS_IP}:8887/post_notification_json -d \
'{"notifications": [{"login_id" : 12, \
"title" : "SFDC test notification", \
"content" : {"handler": "sfdc","payload": \
{"status": "down","priority": "070 Unknown" \
"subject": "Notification subject","host": "example.net",\
"service": "test-service","environment": "123",\
"body": "Notification item body"}, \

"application_id": 2} }1}'

3. Log in to Salesforce and verify that the alert is filed correctly.

©2025, Mirantis Inc. Page 326

Mirantis Cloud Platform Deployment Guide

Configure email integration for OSS manually

Warning

The DevOps Portal has been deprecated in the Q4°18 MCP release tagged with the
2019.2.0 Build ID.

Note

Configuring notifications through the Push Notification service is deprecated. Mirantis
recommends that you configure Alertmanager-based notifications as described in MCP
Operations Guide: Enable Alertmanager notifications.

The Push Notification service can route notifications based on the alarms triggered by the issues
that are found by Prometheus Alertmanager through email.

Warning

This section describes how to manually configure the Push Notification service Reclass
metadata to integrate email routing for notifications in an existing OSS deployment.
Therefore, if you want to configure the email routing configuration, perform the procedure
below.

Otherwise, if you are performing the initial deployment of your MCP environment, you
should have already configured your deployment model with the default Simple Mail
Transfer Protocol (SMTP) parameters for the Push Notification service as described in OSS
parameters and the OSS webhook parameters as described in StackLight LMA product
parameters. In this case, skip this section.

Note

The Push Notification service only routes the received notifications to email recipients.
Therefore, you must also provide the Prometheus Alertmanager service with a predefined
alert template containing an email handler as described in MCP Operations Guide: Enable
notifications through the Push Notification service.

To configure email integration for OSS manually:

1. Obtain the following data:

©2025, Mirantis Inc. Page 327

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-notifications/enable-alertmanager-notifications.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-notifications/enable-alertmanager-notifications.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-notifications/configure-sl-notifications-pushkin.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-notifications/configure-sl-notifications-pushkin.html

Mirantis Cloud Platform Deployment Guide

* pushkin_smtp host

SMTP server host for email routing. Gmail server host is used by default
(smtp.gmail.com).

* pushkin_smtp_port
SMTP server port for email routing. Gmail server port is used by default (587).
* webhook from
Source email address for notifications sending.
* pushkin_email_sender_password
Source email password for notifications sending.
* webhook recipients
Comma-separated list of notification recipients.
2. Verify that the following services are properly configured and deployed:

 Elasticsearch
* PostgreSQL

Note

For the configuration and deployment details, see:

* Configure services in the Reclass model

* Deploy OSS services manually

3. In the /srv/salt/reclass/classes/cluster/${ param:cluster name}/oss/server.yml file, define
the following parameters:

parameters:
_param:
pushkin_smtp_host: smtp.gmail.com
pushkin_smtp port: 587
webhook_from: your_sender@mail.com
pushkin_email_sender_password: your_sender_password
webhook recipients: "recepientl@mail.com,recepient2@mail.com"

4. Push all changes of the model to the dedicated project repository.
5. Refresh pillars and synchronize Salt modules:

salt '*' saltutil.refresh_pillar
salt "**' saltutil.sync_modules

6. If you have the running pushkin docker stack, remove it and apply the following Salt states:

©2025, Mirantis Inc. Page 328

Mirantis Cloud Platform Deployment Guide

salt -C 'l@docker:swarm:role:master' state.sls docker.client

©2025, Mirantis Inc. Page 329

Mirantis Cloud Platform Deployment Guide

Deploy StackLight LMA

StackLight LMA is the Logging, Monitoring, and Alerting toolchain, the capacity planning,
operational health, and response monitoring solution for Mirantis Cloud Platform (MCP).
StackLight LMA is based on the time-series database and flexible cloud-native monitoring
solution called Prometheus. Prometheus provides powerful querying capabilities and integrates
with Grafana providing real-time visualization.

This section explains how to configure and install StackLight LMA including the components that
it integrates after you deploy a Kubernetes cluster or an OpenStack environment on your MCP
cluster.

Before you start installing the StackLight LMA components, verify that your MCP cluster meets
the StackLight LMA hardware requirements.

©2025, Mirantis Inc. Page 330

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/openstack-ref-arch.html

Mirantis Cloud Platform Deployment Guide

Prerequisites

Before you start installing the StackLight LMA components, complete the following steps:

1. Configure StackLight LMA for installation.

The configuration of StackLight LMA for installation is defined in the Reclass model. See
stacklight-salt-model as an example of the Reclass model to install StackLight LMA on
Mirantis Cloud Platform. Three levels of the Reclass models are currently collocated on the
Salt Master node under the /srv/salt/reclass/classes directory:

* The service level model is imported directly from the metadata/service directory of all
MCP formulas. The Reclass parameters that are defined at the service level are the
most generic parameters and should not be modified in practice.

* The system level model, which is currently defined in the user Reclass model, imports
the service level models and defines additional parameters. The parameters defined in
the system level model relate to the system-wide configuration of StackLight LMA, such
as the IP address and port number of the Elasticsearch server.

* The cluster level model defines the configuration of StackLight LMA for a particular
deployment. A user Reclass model to install OpenStack with StackLight LMA must be
created. This is where you typically customize your deployment.

2. Deploy Docker Swarm master:

salt -C 'l@docker:host' state.sls docker.host
salt -C 'l@docker:swarm:role:master' state.sls docker.swarm

3. Deploy Docker Swarm workers:
salt -C 'l@docker:swarm:role:manager' state.sls docker.swarm -b 1
4. Deploy Keepalived:

salt -C 'l@keepalived:cluster' state.sls keepalived -b 1

5. Deploy NGINX proxy:

salt -C 'l@nginx:server' state.sls nginx

6. Verify that you have Internet access to download several external packages that are not
included in the standard Ubuntu distribution. If there is no Internet access, these
repositories must be mirrored on MCP.

Install the system-level Stacklight LMA services

StackLight LMA integrates several backend servers to visualize an environment monitoring and
health statuses. This section describes how to install the Elasticsearch and Kibana logs analysis
solution. For a Kubernetes-based MCP cluster, additionally install Galera.

©2025, Mirantis Inc. Page 331

Mirantis Cloud Platform Deployment Guide

Install Elasticsearch and Kibana

The Elasticsearch and Kibana servers must be installed on the log cluster of the Mirantis Cloud
Platform.

Caution!

To avoid the split-brain issues, install the Elasticsearch and Kibana cluster on a minimum
of three nodes.

Note
Advanced cluster operations may require manual steps.

©2025, Mirantis Inc. Page 332

Mirantis Cloud Platform Deployment Guide

Configure Elasticsearch and Kibana

The configuration parameters of the Elasticsearch engine and Kibana dashboards are defined in
the corresponding Salt formulas. For details and the configuration examples, see Elasticsearch
Salt formula and Kibana Salt formula.

©2025, Mirantis Inc. Page 333

https://gerrit.mcp.mirantis.com/gitweb?p=salt-formulas/elasticsearch.git;a=tree;h=refs/heads/master;hb=refs/heads/master
https://gerrit.mcp.mirantis.com/gitweb?p=salt-formulas/elasticsearch.git;a=tree;h=refs/heads/master;hb=refs/heads/master
https://gerrit.mcp.mirantis.com/gitweb?p=salt-formulas/kibana.git;a=tree;h=refs/heads/master;hb=refs/heads/master

Mirantis Cloud Platform Deployment Guide

Deploy Elasticsearch and Kibana
The deployment of Elasticsearch and Kibana consists of the server and the client deployment.

To deploy Elasticsearch and Kibana:

1. Log in to the Salt Master node.
2. Deploy the Elasticsearch and Kibana services:

salt -C 'l@elasticsearch:server' state.sls elasticsearch.server -b 1
salt -C 'l@kibana:server' state.sls kibana.server -b 1

3. Deploy the Elasticsearch and Kibana clients that will configure the corresponding servers:

salt -C 'l@elasticsearch:client' state.sls elasticsearch.client
salt -C 'l@kibana:client' state.sls kibana.client

4. Apply the haproxy state on the log nodes:

salt 'log*' state.sls haproxy

©2025, Mirantis Inc. Page 334

Mirantis Cloud Platform Deployment Guide

Verify Elasticsearch and Kibana after deployment

After you deploy Elasticsearch and Kibana, verify that they are up and running using the steps
below.

To verify the Elasticsearch cluster:

1. Log in to one of the log hosts.

2. Run the following command:

curl http://10g:9200

Example of the system response:

curl http://10g:9200
{

"name" : "log01",
"cluster_ name" : "elasticsearch",
"cluster_uuid" : "KJM5s5CkTNKGkhd807gcCg",
"version" : {
"“number" : "2.4.4",
"build_hash" : "fcbb46dfd45562a9cf00c604b30849a6dec6b017",
"build_timestamp" : "2017-06-03T11:33:16Z",
"build_snapshot" : false,
"lucene_version" : "5.5.2"

}

"tagline" : "You Know, for Search"
}

To verify the Kibana dashboard:

1. Log in to the Salt Master node.
2. ldentify the prx VIP of your MCP cluster:

salt-call pillar.get param:openstack proxy address

3. Open a web browser.

4. Paste the prx VIP and the default port 5601 to the web browser address field. No credentials
are required.

Once you access the Kibana web Ul, you must be redirected to the Kibana Logs analytics
dashboard.

©2025, Mirantis Inc. Page 335

Mirantis Cloud Platform Deployment Guide

Install Galera (MySQL)

For the Kubernetes-based MCP clusters, you must also install Galera as a back end for StackLight
LMA. Galera is a synchronous multi-master database cluster based on the MySQL storage
engine.

To install Galera:

1. Log in to the Salt Master node.
2. Apply the galera state:

salt -C 'l@galera:master’ state.sls galera
salt -C 'l@galera:slave' state.sls galera -b 1

3. Verify that Galera is up and running:

salt -C 'l@galera:master' mysql.status | grep -Al wsrep_cluster_size
salt -C 'l@galera:slave' mysql.status | grep -Al wsrep_cluster _size

©2025, Mirantis Inc. Page 336

Mirantis Cloud Platform Deployment Guide

Install the StackLight LMA components

After you deploy Elasticsearch and Kibana as described in Install the system-level Stacklight LMA
services, proceed to configuring and installing Prometheus-based StackLight LMA.

Warning

If any of the steps below fail, do not proceed without resolving the issue.

To install the StackLight LMA components:

1. Log in to the Salt Master node.
2. Install Telegraf:

salt -C 'l@telegraf:agent or I@telegraf:remote_agent' state.sls telegraf

This formula installs the Telegraf package, generates configuration files, and starts the
Telegraf service.

3. Configure Prometheus exporters:
salt -C 'l@prometheus:exporters' state.sls prometheus
4. Configure Fluentd:
salt -C 'l@fluentd:agent' state.sls fluentd.agent
5. Install MongoDB:
salt -C 'l@mongodb:server' state.sls mongodb
6. Generate the configuration for services running in Docker Swarm:
salt -C 'l@docker:swarm and I@prometheus:server' state.sls prometheus -b 1
7. Deploy Prometheus long-term storage.
salt -C 'l@prometheus:relay' state.sls prometheus
8. Deploy the monitoring containers:
salt -C 'l@docker:swarm:role:master and I@prometheus:server' state.sls docker

9. Configure the Grafana client:

©2025, Mirantis Inc. Page 337

Mirantis Cloud Platform Deployment Guide

salt -C 'l@grafana:client' state.sls grafana.client

10 Customize the alerts as described in MCP Operations Guide: Alerts that require tuning.

11 Proceed to Verify the StackLight LMA components after deployment.

©2025, Mirantis Inc. Page 338

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/alerts/tuning-alerts.html

Mirantis Cloud Platform Deployment Guide

Verify the StackLight LMA components after deployment

Once you install the StackLight LMA components as described in Install the StackLight LMA
components, verify that all components have been successfully deployed and all services are up
and running.

To verify the StackLight LMA components:

1.
2.

Log in to the Salt Master node.

Verify that all the monitoring services running in Docker Swarm have their expected number
of replicas:

salt -C 'l@docker:client:stack:monitoring' cmd.run 'docker service Is'

Example:

root@sup01l:~# docker service Is

ID NAME MODE REPLICAS IMAGE

jOhrithOagyx monitoring_server replicated 1/1 prometheus:latest
pgegda711a69 dashboard grafana replicated 1/1 grafana/grafana:latest
xrdmspdexojs monitoring_pushgateway replicated 2/2 pushgateway:latest
xztynkgfolpu monitoring_alertmanager replicated 2/2 alertmanager:latest
i2xc7j9ei81k monitoring_remote_agent replicated 1/1 telegraf:latest

. Verify the status of the containers:

salt -C 'l@docker:swarm:role:master and I[@prometheus:server' cmd.run \
'docker service ps $(docker stack services -q monitoring)'

. Inspect the monitoring containers logs for any unusual entries:

salt -C 'l@docker:swarm:role:master and I@prometheus:server' cmd.run \
‘for i in $(docker stack services -q monitoring); do docker service logs --tail 10 $i; done'

. Verify that the Fluentd service is running:

salt -C 'l@fluentd:agent' service.status td-agent

. Verify Prometheus Relay:

salt -C 'l@prometheus:relay' service.status prometheus-relay

. If deployed, verify Prometheus long-term storage:

salt -C 'l@prometheus:relay' service.status prometheus

©2025, Mirantis Inc. Page 339

Mirantis Cloud Platform Deployment Guide

8. Verify the Prometheus web Ul:

1. Connect to the Prometheus web Ul as described in the corresponding section of the
MCP Operations Guide.

2. From the Status drop-down list, select Targets.

3. Verify that all targets are in the UP state.
4. Click the Alerts tab.
5. Verify that no alerts are active.

9. Verify the Alertmanager web Ul:
1. Connect to the Alertmanager web Ul as described in Use the Alertmanager web Ul.
2. Click Alerts.
3. Verify that no alerts are active.

10 Verify the Grafana dashboards:

" 1. Enter the prx VIP on port 3000 by default.

2. Authenticate using your credentials as described in Connect to Grafana. You should be
redirected to the Grafana Home page with a list of available dashboards sorted by
name.

3. Verify that all nodes are listed in the System dashboard.

11 Verify the Kibana dashboards by connecting to Kibana as described in the Connect to
. Kibana.

Seealso

* MCP Reference Architecture: StackLight LMA
* MCP Operations Guide: StackLight LMA operations

©2025, Mirantis Inc. Page 340

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/use-prometheus-ui/prometheus-ui-connect.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/use-alertmanager-web-ui.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/use-grafana/connect-to-grafana.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/use-kibana/connect-to-kibana.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/use-kibana/connect-to-kibana.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/stacklight.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma.html

Mirantis Cloud Platform Deployment Guide

Finalize the deployment
The last step of a manual deployment is ensuring highstates on all nodes.

To ensure highstates:

1. Log in to the Salt Master node.
2. Verify that all machines have connectivity with the Salt Master node:

salt '*' test.ping
3. Ensure highstate on the Salt Master node:

salt-call state.apply -I debug

4. Ensure highstate on the GlusterFS nodes one by one to avoid race condition:

salt -C 'l@glusterfs:server' state.apply -bl -l debug

5. Ensure highstate on the rest of the nodes:

salt -C "* and not l@glusterfs:server and not cfg*' state.apply -l debug

©2025, Mirantis Inc.

Page 341

Mirantis Cloud Platform Deployment Guide

Deployment customizations guidelines

This section contains instructions that do not belong to a specific part of the deployment
workflow. Otherwise speaking, the procedures included in this section are optional and contain
only customizations guidelines that can be skipped if you perform the default MCP deployment.

The procedures below are referenced from the sections where they can merge into the general
deployment workflow. You should not perform these procedures as standalone instructions. And
always remember to continue the deployment exactly from the step that referenced you to this
section.

©2025, Mirantis Inc. Page 342

Mirantis Cloud Platform Deployment Guide

Generate configuration drives manually

You may need to manually generate the configuration drives for an automated MCP deployment
after you customize their content to meet specific requirements of your deployment. This
section describes how to generate the configuration drives using the create-config-drive script.

To generate a configuration drive for the cfg01 VM:
1. Download the create-config-drive script for generating the configuration drive:

export MCP_VERSION="master"

wget -O /root/create-config-drive.sh \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/$ { MCP_VERSION }/config-drive/create_config_drive.sh
chmod +x /root/create-config-drive.sh

2. Download the Salt Master configuration script:

wget -O /root/user_data.yaml \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/${MCP_VERSION }/config-drive/master_config.yaml

3. In user_data.yaml, modify the lines that start with export to fit your environment. If you use
local (aptly) repositories, select the following parameters to point to your local repositories
address on port 8088:

« MCP_VERSION
« PIPELINES_FROM_ISO=false
« PIPELINE_REPO_URL

« MCP_SALT REPO_KEY

« MCP_SALT REPO_URL

4. For debugging purposes, configure custom access to the cfg01l node in user _data.yaml
using the following parameters:

* name - user name.

* sudo, NOPASSWD - the sudo permissions for a user. The value ALL grants administrator
privileges to a user.

* groups - a user group. For example, admin. Add a comma-separated list of groups if
necessary.

* lock_passwd - deny or allow logging in using a password. Possible values are true
(deny) or false (allow). Select false.

* passwd - a password hash, not the password itself. To generate a password and its
hash, run mkpasswd --method=SHA-512 --rounds=4096. Remember the generated
password for further access to the virsh console.

Configuration example:

©2025, Mirantis Inc. Page 343

Mirantis Cloud Platform Deployment Guide

users:
- hame: barfoo
sudo: ALL=(ALL) NOPASSWD:ALL
groups: admin
lock_passwd: false
passwd: <generated_password_hash>

5. Select from the following options:
* If you do not use local repositories:

1. Clone the mk-pipelines and pipeline-library Git repositories:

git clone --mirror https://github.com/Mirantis/mk-pipelines.git /root/mk-pipelines
git clone --mirror https://github.com/Mirantis/pipeline-library.git /root/pipeline-library

2. Put your Reclass model that contains the classes/cluster, classes/system, nodes,
.git, and .gitmodules directories in /root/model.

3. Install genisoimage:
apt install genisoimage

4. Run the configuration drive generator script:

/root/create-config-drive.sh -u /root/user_data.yaml -h cfg01 \
--model /root/model --mk-pipelines /root/mk-pipelines \
--pipeline-library /root/pipeline-library cfg01-config.iso

The generated configuration drive becomes available as the cfg01-config.iso file.

* If you use local repositories:

1. Install genisoimage:
apt install genisoimage

2. Put your Reclass model that contains the classes/cluster, classes/system, nodes,
.git, and .gitmodules directories in /root/model.

mkdir /root/model
cp -r /root/mcpdoc/{classes, .git, .gitmodules, nodes } /root/model
tree /root/model -alL 2

3. Run the configuration drive generator script:

/root/create-config-drive.sh -u /root/user_data.yaml -h cfg01 \
--model /root/model cfg01-config.iso

©2025, Mirantis Inc. Page 344

Mirantis Cloud Platform Deployment Guide

The generated configuration drive becomes available as the cfg01-config.iso file.
To generate a configuration drive for the APT VM:

1. Download the create-config-drive script for generating the configuration drive:

export MCP_VERSION="master"
wget -O /root/create-config-drive.sh \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/$ { MCP_VERSION }/config-drive/create_config_drive.sh

chmod +x /root/create-config-drive.sh

2. Download the mirror configuration script:

wget -O /root/user_data.yaml \
https://raw.githubusercontent.com/Mirantis/mcp-common-scripts/$ {MCP_VERSION }/config-drive/mirror_config.yaml

3. In user_data.yaml, modify the lines that start with export to fit your environment.

4. Run the configuration drive generator script:

/root/create-config-drive.sh -u /root/user_data.yaml -h apt01 apt-config.iso

The generated configuration drive should now be available as the apt-config.iso file.

To generate a simple configuration drive for any cloud-image:

1. Install the cloud-image-utils tool:
apt-get install -y cloud-image-utils

2. For example, create a configuration file with the config-drive-params.yaml name.

3. In this file, enable the password access for root and Ubuntu users. For example:

#cloud-config
debug: True
ssh_pwauth: True
disable_root: false
chpasswd:
list: |
root:r00tme
ubuntu:r00Otme
expire: False

runcmd:
- sed -i 's/PermitRootLogin.*/PermitRootLogin yes/g' /etc/ssh/sshd_config
- sed -i 's/PasswordAuthentication.*/PasswordAuthentication yes/g' /etc/ssh/sshd_config
- service sshd restart
4. Create the configuration drive:

cloud-localds --hostname testvm --dsmode local mynewconfigdrive.iso config-drive-params.yaml

©2025, Mirantis Inc. Page 345

Mirantis Cloud Platform Deployment Guide

Now, you can use mynewconfigdrive.iso with any cloud-image. For example, with the MCP VCP
images or any other image that has cloud-init pre-installed.

©2025, Mirantis Inc. Page 346

Mirantis Cloud Platform Deployment Guide

Add custom commissioning scripts

Using MAAS, you can extend the default commissioning logic with additional user-defined
scripts. Each defined script will be applied to a VM commissioning by default.

For example, to set custom NIC names that are oneXX for a 1 GB Ethernet and tenXX for a 10 GB
Ethernet, refer to the following procedures.

In the examples below, the default 00-maas-05-simplify-network-interfaces script from the
salt-formulas-maas package is used. The script is located on the Salt Master node in the
/srv/salt/env/prd/maas/files/commisioning_scripts/ directory.

To automatically add the commissioning script using Salt:
1. Prepare a script for commissioning and save it on the MAAS control node, which is located

on the Salt Master node. For example, use the default script from the salt-formulas-maas
package.

2. Enable automatic importing of the script by defining it in
/srv/salt/reclass/classes/cluster/<CLUSTER NAME>/infra/maas.ymil:

parameters:
maas:
region:
commissioning_scripts:
00-maas-05-simplify-network-interfaces: /etc/maas/files/commisioning_scripts/00-maas-05-simplify-network-interfaces

machines:

Caution!

The commissioning script name is important. If you have several scripts, they will run
in the alphanumeric order depending on their name.
3. Run the following command:

salt-call -I debug --no-color maas.process_commissioning_scripts

Example of system response:

success:
- 00-maas-05-simplify-network-interfaces

©2025, Mirantis Inc. Page 347

Mirantis Cloud Platform Deployment Guide

The script 00-maas-05-simplify-network-interfaces is uploaded to MAAS from the
/etc/maas/files/commisioning_scripts/ directory.

After the importing is done, proceed with commissioning depending on your use case as
described in Provision physical nodes using MAAS.

To clean up old software RAID:

If you re-install the operating system on the nodes where the software RAID was set up and was
not correctly removed, MAAS may encounter the problem while attempting to provision the
system. Therefore, you may want to enable the cleanup commissioning script before you
proceed with the comissioning of such a hardware node.

Note

The cleanup commissioning script is not included in MAAS by default.

Caution!

If the cleanup commissioning script is allowed, it erases all data located on the disks.

To enable the cleanup commissioning script, select from the following options:
* Enable the script through the Reclass model:

1. Log in to the Salt Master node.
2. Open the cluster level of your Reclass model.
3. Define the script:
parameters:
maas:
region:

commissioning_scripts:
00-maas-01-disk-cleanup: /etc/maas/files/commisioning_scripts/00-maas-01-disk-cleanup

4. Apply the change:

salt -C 'l@maas:region' maas.process_commissioning_scripts

» Define the script through the MAAS web Ul as described in Upload procedure in the official
MAAS documentation.

After the script is enabled, proceed with commissioning depending on your use case as
described in Provision physical nodes using MAAS.

©2025, Mirantis Inc. Page 348

https://docs.maas.io/2.5/en/nodes-scripts#upload-procedure

Mirantis Cloud Platform Deployment Guide

To manually add the commissioning script using the MAAS web Ul:

1.Log in to the MAAS web Ul through salt master management address/MAAS with the
following credentials:

e Username: mirantis

* Password: rO0tme
2. Go to the Settings tab.

3. Scroll to Commissioning scripts.

4. Click Upload script to chose a file for uploading. For example, use the default script from the
salt-formulas-maas package.

Caution!

The commissioning script name is important. If you have several scripts, they will run
in the alphanumeric order depending on their name.

After the importing is done, proceed with commissioning depending on your use case as
described in Provision physical nodes using MAAS.

©2025, Mirantis Inc. Page 349

Mirantis Cloud Platform Deployment Guide

Customize the prebuilt mirror node

This section describes the content and sources definition for the apt01 node. For the deployment
details, see: Deploy the APT node. Using procedures described in this section, you can enable a
full lifecycle management of an offline apt01 node.

By default, an MCP deployment does not contain any pillar information about an offline node
content.

Warning

Enabling of the offline mirror management is not fully supported, and may override some
variables on the cluster level of the Reclass model.

©2025, Mirantis Inc. Page 350

Mirantis Cloud Platform Deployment Guide

Enable the APT node management in the Reclass model

This section instructs you on how to configure your existing cluster model to enable the
management of the offline mirror VM through the Salt Master node.

Warning

Perform the procedure below only in case of an offline deployment or when using a local
mirror from the prebuilt image.

To configure the APT node management in the Reclass model:

1. Verify that you have completed Enable the management of the APT node through the Salt
Master node.

2. Log in to the Salt Master node.
3. Open the cluster level of your Reclass model.

4. In infra/config/nodes.yml, add the following pillars:

parameters:
reclass:
storage:
node:
aptly_server_nodeO1l:
name: ${_param:aptly_server_hostname}01
domain: ${ param:cluster domain}
classes:
- cluster.${_param:cluster_name}.infra
- cluster.${_param:cluster_name}.infra.mirror
- system.linux.system.repo.mcp.apt_mirantis.extra
- system.linux.system.repo.mcp.apt_mirantis.ubuntu
- system.linux.system.repo.mcp.apt_mirantis.docker
params:
salt_master_host: ${ param:reclass_config_master}
linux_system_codename: xenial
single_address: ${ param:aptly_server control_address}
deploy_address: ${ param:aptly server _deploy address}

5. If the offline mirror VM is in the full offline mode and does not have the infra/mirror path,
create the infra/mirror/init.yml file with the following contents:

classes:

- service.docker.host

- system.git.server.single
- system.docker.client
parameters:

©2025, Mirantis Inc. Page 351

Mirantis Cloud Platform Deployment Guide

linux:
network:
interface:
ens3: ${ param:single_address}

For a complete example of the mirror content per MCP release, refer to init.yml located at
https://github.com/Mirantis/mcp-local-repo-model/blob/<BUILD ID>/ tagged with a
corresponding Build ID.

6. Add the following pillars to infra/init.yml or verify that they are present in the model:

parameters:
linux:
network:
host:
apt:

address: ${ param:aptly_server deploy address}
names:
- ${ param:aptly server_hostname}
- ${ param:aptly _server hostname}.${ param:cluster domain}

7. Check out your inventory to be able to resolve any inconsistencies in your model:

reclass-salt --top

8. Use the system response of the reclass-salt --top command to define the missing variables
and specify proper environment-specific values if any.

9. Generate the storage Reclass definitions for your offline image node:

salt-call state.sls reclass.storage -I debug

10 Synchronize pillars and check out the inventory once again:

salt "*' saltutil.refresh_pillar
reclass-salt --top

11 Verify the availability of the offline mirror VM. For example:

salt 'aptOl.local-deployment.local' test.ping

If the VM does not respond, verify that Salt Master accepts the key for the VM using the
salt-key command.

©2025, Mirantis Inc. Page 352

Mirantis Cloud Platform Deployment Guide

Customize the prebuilt mirrors

You can easily customize mirrored Aptly, Docker, and Git repositories by configuring contents of
the mirror VM defined in the infra/mirror/init.yml file of the Reclass model.

To customize the debmirror repositories mirrors

You can either customize the already existing debmirrors content or specify any custom mirror
required by your MCP deployment.

1. Customize the debmirror content as required. Example of customization:

Note

Starting from the MCP Build ID 2019.2.0, the default list of repositories per release is
defined in reclass-system/debmirror/mirror_mirantis_com/init.yml. For earlier MCP
releases, the repositories are included directly from the corresponding classes.

debmirror:
client:
enabled: true
mirrors:
mirror_mirantis_com_ceph_luminous_xenial:
arch:
-amd64
dist:
- xenial
extra_flags:
- --verbose
- --progress
- --nosource
- --no-check-gpg
- --rsync-extra=none
filter:
'1": --exclude='(-dbg_|-dbg-)'

force: false
lock_target: true
log_file: /var/log/debmirror/mirror_mirantis_com_ceph_luminous_xenial.log
method: rsync
mirror_host: mirror.mirantis.com
mirror_root: :mirror/proposed/ceph-luminous/xenial/
section:
- main
target_dir: /srv/volumes/aptly/public/proposed//ceph-luminous/xenial/

2. Include the debmirror content class to infra/mirror/init.yml. For example, to include all
repositories by default for future MCP cluster update, add the following class:

©2025, Mirantis Inc. Page 353

Mirantis Cloud Platform Deployment Guide

- system.debmirror.mirror_mirantis_com

3. Apply the debmirror state:

salt '<offline_node_name>' state.apply debmirror

Example: Deliver the OpenStack Pike update repository to an offline deployment

For a fully isolated MCP cluster with no access to the Mirantis mirrors even from the apt01 node,
you can enable generation of a copy of a mirrored repository directly on a host node. You can
then move this copy to the apt01 node using scp or rsync, for example.

This is the exemplary procedure of the debmirror repository customization that delivers the
OpenStack Pike update repository. Such customization enables you to obtain the MCP
maintenance updates.

Note

The exemplary steps described below are performed locally in a non-customized Docker
container that runs Ubuntu 16.04. However, you can use any other debmirror-compatible
operating system.

1. In reclass-system/debmirror/mirror_mirantis_com/init.yml| described above, identify the
repository classes available for an MCP release version deployed on your cluster and select
the one that you need to receive maintenance updates for. For example, for OpenStack
Pike:

cat debmirror/mirror_mirantis_com/init.yml |grep openstack-pike

- system.debmirror.mirror_mirantis_com.openstack-pike.xenial

2. Obtain the required data for the selected class and convert it to a debmirror utility.

Note

For human readability, the debmirror formula has the native debmirror syntax that
allows you to convert a class data into a local cmdline.

For example:

1. Display contents of the OpenStack xenial.yml file:

©2025, Mirantis Inc. Page 354

Mirantis Cloud Platform Deployment Guide

cat debmirror/mirror_mirantis_com/openstack-pike/xenial.yml

parameters:
debmirror:
client:
enabled: true
mirrors:
mirror_mirantis_com_openstack pike_xenial:
force: ${ param:mirror_mirantis_com_openstack pike xenial force}
lock target: True
extra_flags: ['--verbose', '--progress', '--nosource', '--no-check-gpg', '--rsync-extra=none']
method: "rsync"
arch: ['amd64']
mirror_host: "mirror.mirantis.com"
mirror_root: ":mirror/${_param:mcp_version}/openstack-pike/xenial/"
target _dir: "${_param:debmirror_mirrors_base_target dir}/openstack-pike/xenial/"
log_file: "/var/log/debmirror/mirror_mirantis_com_openstack pike xenial.log"
dist: [xenial]
section: [main]
filter:
001: --exclude="(-|_)dbg(_|-)’

2. Convert the contents obtained in the previous step into the debmirror cmdline:

debmirror --verbose --progress --nosource --no-check-gpg --rsync-extra=none --dist=xenial --section=main \
--method=rsync --host="mirror.mirantis.com" --root=":mirror/update/2019.2.0/openstack-pike/xenial/" \
--arch=amd64 --exclude='(-|_)dbg(_|-)' /debmirror_example/update/2019.2.0/update/openstack-pike/xenial/

In the example cmdline above, the path to mirror_root is extended with the /update/
subdirectory to fetch the update repository.

3. Create a directory for the update repository. For example:

mkdir debmirror_example/2019.2.0/update/openstack-pike/xenial/

4. Run a non-customized Docker container that runs Ubuntu 16.04. For example:

docker run -v $(pwd)/debmirror_example:/debmirror_example --hostname=docker-16 \
--cpus=4 -ti ubuntu:xenial /bin/bash

5. Install debmirror in this container:

root@docker-16:/# apt-get update && apt-get install -y xz-utils debmirror rsync apt-transport-https curl
root@docker-16:/# curl -fsSL https://mirror.mirantis.com/update/2019.2.0/openstack-pike/xenial/archive-pike.key | apt-key add -

6. Run cmdline prepared in the step 2.2:

©2025, Mirantis Inc. Page 355

Mirantis Cloud Platform Deployment Guide

root@docker-16:/# debmirror --verbose --progress --keyring=/etc/apt/trusted.gpg --nosource \
--rsync-extra=none --dist=xenial --section=main --method=rsync \

--host="mirror.mirantis.com" --root=":mirror/update/2019.2.0/openstack-pike/xenial/" \
--arch=amd64 --exclude="'(-|_)dbg(_|-)' /debmirror_example/update/2019.2.0/openstack-pike/xenial/

7. Exit from the Docker container.

8. Inspect the update mirror that is now locally available in:

tree -L 5 debmirror_example/
debmirror_example/
L— update
L—2019.2.0
L— openstack-pike
L— xenial
dists
pool

9. Move the structure of the downloaded repository to the apt01 node. By default, the update
mirror structure is located on the apt0l node in
/srv/volumes/aptly/public/update/2019.2.0/openstack-pike.

Warning

While modifying /srv/volumes/aptly/public/update/, make sure that you remove the
symlinks only for those repositories that you are going to update. In this example, this
is only openstack-pike. Otherwise, the main release binaries for the components that
are not being updated will be lost.

1. In /srv/volumes/aptly/public/update/, remove the default symlink that refers to the MCP
release version deployed on a cluster. For example:

rm -v /srv/volumes/aptly/public/update/2019.2.0

Note

The symlink is created in the offline mirror for backward compatibility purposes.

2. Create the same links for the underlay repositories. Use the following script as
example:

©2025, Mirantis Inc. Page 356

Mirantis Cloud Platform Deployment Guide

apt0l:# export release='2019.2.0'; pushd '/srv/volumes/aptly/public/update/' \
if [[-d ${release} && ! -h ${release}]]; then echo 'lts already dir, nothing todo' ;else \
rm -v ${release}; \
mkdir -p ${release}; \
cd ${release}; \
for repo in $(Is ../../${release}/) ; do In -sv ../../${release}/$repo . ; done ;\
fi

3. Remove only required symlink, for example, openstack-pike, and move the newly
generated data to the new structure.

The final example structure is as follows:

tree -L 4 /srv/volumes/aptly/public/update/
update/
L—2019.2.0
— ceph-luminous -> ../../2019.2.0/ceph-luminous

— maas -> ../../2019.2.0/maas
— openstack-pike
L— xenial

dists

pool
— saltstack-2017.7 -> ../../2019.2.0/saltstack-2017.7
— td-agent -> ../../2019.2.0/td-agent

To customize the Docker images mirrors

The Docker repositories are defined as an image list that includes a registry and name for each
Docker image.

1. Customize the list depending on the needs of your MCP deployment:

* Specify a different Docker registry for the existing image to be pulled from

* Add a new Docker image
Customization example in infra/mirror/init.yml:

Note

Starting from the MCP Build ID 2019.2.0, the default list of repositories per release is
defined in default_local_mirrror_content:docker client_registry image.

docker:
client:
registry:

©2025, Mirantis Inc. Page 357

Mirantis Cloud Platform Deployment Guide

target_registry: apt:5000
image:
- name: openldap:1.2.2
registry: docker-prod-local.artifactory.mirantis.com/mirantis/external/osixia
- name: jenkins:proposed
registry: docker-prod-local.artifactory.mirantis.com/mirantis/cicd
target_registry: apt:5000/mirantis/cicd

Note

The target _registry parameter specifies which registry the images will be pushed into.

2. Synchronize the Docker registry:

salt '<offline_node_name>' state.sls docker.client.registry

To customize the Git repositories mirrors

The Git repositories are defined as a repository list that includes a name and URL for each Git
repository.

1. Customize the Git repositories list depending on the needs of your MCP deployment.

Note

Starting from the MCP Build ID 2019.2.0, the default list of repositories per release is
defined in default_local_mirrror_content:git server repos.

Customization example in infra/mirror/init.yml:

git:
server:
directory: /srv/git/
repos:
- name: mk-pipelines
url: https://github.com/Mirantis/mk-pipelines.git
- name: pipeline-library
url: https://github.com/Mirantis/pipeline-library.git

2. Synchronize the Git repositories:

salt '<offline_node_name>' state.sls git.server

©2025, Mirantis Inc. Page 358

Mirantis Cloud Platform Deployment Guide

To customize the MAAS mirrors

The MAAS mirrors are defined as image sections that include bootloaders and packages. Usually,
they should not be customized since they mirror the upstream MAAS repositories directly.

Note

Starting from the MCP Build ID 2019.2.0, the default list of the MAAS image sections per
release is defined in default_local_mirrror_content:maas_mirror_image_sections.

1. Inspect the default MAAS pillar structure in defaults/maas.yml on the system level of the
Reclass model:

parameters:
_param:
maas_postgresql _server: ${ param:postgresql_server}
default_local_mirrror_content:
maas_mirror_image_sections:
bootloaders:
keyring: /usr/share/keyrings/ubuntu-cloudimage-keyring.gpg
upstream: ${ param:linux_system _repo_update url}/maas-ephemeral-v3/
local_dir: /srv/http/${ param:mcp_version}/maas-ephemeral-v3/
count: 1
i386 need for pxe
filters: ['arch~(i386]amd64)’, 'os~(grub*|pxelinux*)']
xenial:
keyring: /usr/share/keyrings/ubuntu-cloudimage-keyring.gpg
upstream: ${ param:linux_system _repo_update url}/maas-ephemeral-v3/
local_dir: /srv/http/${ param:mcp_version}/maas-ephemeral-v3/
count: 1
filters: ['release~(xenial)', 'arch~(amd64)’, 'subarch~(genericlhwe-16*|ga-16*)']

2. In infra/mirror/init.yml, add the customizations under the maas:mirror:image:sections pillar.

Also, use this pillar to update the MAAS mirrors. For example:

maas:
mirror:
enabled: true
image:
sections: ${ param:default_local_mirrror_content:maas_mirror_image_sections}

3. Synchronize the MAAS repositories:

salt '<offline_node_name>' state.sls maas.mirror

To customize static binaries or images

©2025, Mirantis Inc. Page 359

Mirantis Cloud Platform Deployment Guide

Depending on the needs of your MCP deployment, you can customize the storage of the offline
image static binaries, images, and other files.

Note

Starting from the MCP Build ID 2019.2.0,

the static binaries are defined in
default_local_mirrror_content:linux_system file.

1. In infra/mirror/init.yml, add the required customizations under the linux:system:directory
and linux:system:file pillars:

linux:
system:
directory:
/srv/http/custom-binaries:
user: www-data
group: www-data
mode: 755
makedirs: true
file:
new_image file:
name: /srv/http/custom-binaries/custom-binary 1
source: <some_source_binary_source>/custom-binary_1
hash: <some_source_binary_source>/custom-binary_1.md5

2. Synchronize the customized files locally:

salt '<offline_node _name>' state.sls linux.system.file
To customize the Aptly repositories mirrors

You can either customize the already existing mirrors content or specify any custom mirror
required by your MCP deployment.

* To customize existing mirror sources:

The sources for existing mirrors can be configured to use different upstream.

Each Aptly mirror specification includes parameters that define their source on the system
level of the Reclass model as well distribution, components, key URL, and GPG keys. To
customize a mirror content, redefine these parameters as required.

An example of the apt.mirantis.com mirror specification:

_param:
mcp_version: stable

mirror_mirantis_openstack_xenial_extra_source: http://apt.mirantis.com/xenial/
mirror_mirantis_openstack_xenial_extra_distribution: ${_param:mcp_version}

©2025, Mirantis Inc. Page 360

Mirantis Cloud Platform Deployment Guide

mirror_mirantis_openstack_xenial_extra_components: extra
mirror_mirantis_openstack xenial_extra_key_url: "http://apt.mirantis.com/public.gpg"
mirror_mirantis_openstack xenial_extra_gpgkeys:
- A76882D3
aptly:
server:
mirror:
mirantis_openstack_xenial_extra:
source: ${_param:mirror_mirantis_openstack_xenial_extra_source}
distribution: ${ param:mirror_mirantis_openstack xenial_extra_distribution}
components: ${_param:mirror_mirantis_openstack_xenial_extra_components}
architectures: amd64
key _url: ${ param:mirror_mirantis_openstack xenial extra_key url}
gpgkeys: ${ param:mirror_mirantis_openstack xenial_extra_gpgkeys}
publisher:
component: extra
distributions:
- ubuntu-xenial/${_param:mcp_version}

Note

You can find all mirrors and their parameters that can be overridden in the
aptly/server/mirror section of the Reclass System Model.

* To add new mirrors, extend the aptly:server:mirror pillar of the model using the structure
defined in the example above.

Note

The aptly:server:mirror:<REPO_NAME>:publisher parameter specifies how the
custom repository will be published.

Example of a custom mirror specification:

aptly:
server:
mirror:
my_custom_repo_main:
source: http://my-custom-repo.com
distribution: custom-dist
components: main
architectures: amd64

©2025, Mirantis Inc. Page 361

https://github.com/Mirantis/reclass-system-salt-model/tree/master/aptly/server/mirror

Mirantis Cloud Platform Deployment Guide

key_url: http://my-custom-repo.com/public.gpg
gpgkeys:
- AAAAOOOO
publisher:
component: custom-component
distributions:
- custom-dist/stable

©2025, Mirantis Inc.

Page 362

Mirantis Cloud Platform Deployment Guide

Create local mirrors manually

If you prefer to manually create local mirrors for your MCP deployment, refer to MCP Release
Notes: Release artifacts for the list of repositories and artifacts required for an installation of
MCP.

Warning

Perform the procedure below only in case you need a new downstream, self-hosted
repository structure. To fetch and update the Mirantis mirrors, refer to Customize the
prebuilt mirrors.

To manually create an Aptly-based local mirror:

1. Log in to the Salt Master node.

2. Identify where the container with the aptly service is running in the Docker Swarm cluster.

salt -C 'l@docker:swarm:role:master' cmd.run 'docker service ps aptly|head -n3'

3. Log in to the node where the container with the aptly service is running.

4. Open the console in the container with the aptly service:

docker exec -it <CONTAINER_ID> bash

5. In the console, import the public key that will be used to fetch the repository.

Note

The public keys are typically available in the root directory of the repository and are
called Release.key or Release.gpg. Also, you can download the public key from the
key server keys.gnupg.net.

gpg --no-default-keyring --keyring trustedkeys.gpg --keyserver keys.gnupg.net \
--recv-keys <PUB_KEY_ID>

For example, for the apt.mirantis.com repository:

gpg --no-default-keyring --keyring trustedkeys.gpg --keyserver keys.gnupg.net \
--recv-keys 24008509A76882D3

6. Create a local mirror for the specified repository:

©2025, Mirantis Inc. Page 363

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/release-artifacts.html
https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/release-artifacts.html

Mirantis Cloud Platform Deployment Guide

Note

You can find the list of repositories in the Repository planning section of the MCP
Reference Architecture guide.

aptly mirror create <LOCAL MIRROR_NAME> <REMOTE_REPOSITORY> <DISTRIBUTION>

For example, for the http://apt.mirantis.com/xenial repository:

aptly mirror create local.apt.mirantis.xenial http://apt.mirantis.com/xenial stable

7. Update a local mirror:

aptly mirror update <LOCAL MIRROR_NAME>

For example, for the local.apt.mirantis.xenial local mirror:

aptly mirror update local.apt.mirantis.xenial

8. Verify that the local mirror has been created:

aptly mirror show <LOCAL MIRROR_NAME>

For example, for the local.apt.mirantis.xenial local mirror:

aptly mirror show local.apt.mirantis.xenial

Example of system response:

Name: local.apt.mirantis.xenial

Status: In Update (PID 9167)

Archive Root URL: http://apt.mirantis.com/xenial/

Distribution: stable

Components: extra, mitaka, newton, oc31, oc311, oc32, 0c323, 0oc40, 0c666, ocata,
salt, salt-latest

Architectures: amd64

Download Sources: no

Download .udebs: no

Last update: never

Information from release file:
Architectures: amd64

©2025, Mirantis Inc. Page 364

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/repo-plan.html

Mirantis Cloud Platform Deployment Guide

Codename: stable

Components: extra mitaka newton oc31 0c311 oc32 0c323 0c40 0c666 ocata salt
salt-latest

Date: Mon, 28 Aug 2017 14:12:39 UTC

Description: Generated by aptly

Label: xenial stable
Origin: xenial stable
Suite: stable

9. In the Model Designer web Ul, set the local_repositories parameter to True to enable using
of local mirrors.

10 Add the local_repo_url parameter manually to classes/cluster/<cluster_name=>/init.yml after
. model generation.

Seealso

* Repository planning
* GitLab Repository Mirroring

* The aptly mirror

©2025, Mirantis Inc. Page 365

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/repo-plan.html
https://docs.gitlab.com/ee/workflow/repository_mirroring.html
https://www.aptly.info/doc/aptly/mirror/

Mirantis Cloud Platform Deployment Guide

Enable authentication for Aptly repositories

This section describes how to enable authentication for Aptly repositories. In this case, access to
Aptly API is restricted to anonymous users and granted through
<aptly_user>:<aptly user _password>.

Prior to enabling authentication, configure it through the installed proxy service such as NGINX
or HAProxy:
* If Aptly is running on the offline node or in the non-Swarm mode, configure authentication
through NGINX.

 Starting from the MCP 2019.2.7 maintenance update, if Aptly is running on the cid nodes,
configure authentication through HAProxy.

©2025, Mirantis Inc. Page 366

Mirantis Cloud Platform Deployment Guide

Configure Aptly authentication through HAProxy

Note

This feature is available starting from the MCP 2019.2.7 maintenance update. Before
using the feature, follow the steps described in Apply maintenance updates.

This section describes how to configure authentication for Aptly repositories through HAProxy if
Aptly is running on the cid nodes.

To configure Aptly authentication through HAProxy:

1. Log in to the Salt Master node.
2. Verify that HAProxy is enabled on the node that runs Aptly API:

salt -C 'l@docker:client:stack:aptly' pillar.get haproxy:proxy:listen:aptly-api
salt -C 'l@docker:client:stack:aptly' pillar.get haproxy:proxy:listen:aptly-public

3.If HAProxy is not enabled, include the following class to
cluster/<cluster_name>/cicd/control/init.yml:

- system.haproxy.proxy.listen.cicd.aptly

4. In cluster/<cluster_name>/cicd/control/init.yml, add the following overrides:

haproxy:
proxy:
userlist:
aptly_users:
name: aptly users
groups:
- name: <user_group_name>
- hame: <user_group_name2>
users:
- name: <user_name>
password: <user_password>
groups: [<user_group_name>]
- name: <user_name2>
password: <user_password2>
groups: [<user_group_name2>]
listen:
aptly-api:
acl:
auth_reg: "http_auth(${haproxy:proxy:userlist:aptly users:name})"
http_request:

©2025, Mirantis Inc. Page 367

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-7/mu-7-apply-updates.html

Mirantis Cloud Platform Deployment Guide

- action: auth
condition: 'if lauth_reg'
aptly-public:
acl:
auth_reg: "http_auth(${haproxy:proxy:userlist:aptly_users:name})"
http_request:
- action: auth
condition: 'if lauth_reg'

For password, define the required password types depending on your needs:

* Add an insecure password and HAProxy will shadow it to the configuration file. For
example:

users:
- name: userl
password: rO0tme

* Add an insecure_password: True parameter and HAProxy will add the password as an
insecure one to the configuration file. For example:

users:
- name: user2
password: rO0tme
insecure_password: True

* Add a shadowed password and HAProxy will add it to the configuration file. For
example:

users:
- name: user3
password: '6wfOxxo0Xj$VqoqozsTPpeKZtw6c7gl2CYyEXfOccdiflZmJwDT1AMKYp/.JUTZcDiZthai3xN9CzDQex9ZUOf3nFMbCm/Oe."'
shadow_password: False

5. Apply the haproxy.proxy state on the Aptly API node:

salt -C 'l@docker:client:stack:aptly' state.apply haproxy.proxy

Once done, access to Aptly API is granted through <aptly user>:<aptly user _password>.
Now, proceed to Enable authentication for Aptly repositories.

©2025, Mirantis Inc. Page 368

Mirantis Cloud Platform Deployment Guide

Configure Aptly authentication through NGINX

This section describes how to configure authentication for Aptly repositories through NGINX if
Aptly is running in the Swarm mode on the offline node or in the non-Swarm mode (as

standalone processes).
To configure Aptly authentication through NGINX:

1. Log in to the Salt Master node.
2. Verify that NGINX is enabled on the node that runs Aptly API:

* If Aptly runs on the offline node in the Swarm mode:
salt -C 'l@docker:client:stack:aptly' pillar.get nginx:server:enabled
* If Aptly runs in the non-Swarm mode:

salt -C 'l@aptly:server' pillar.get nginx:server:enabled

3. Open one of the following files for editing:

«If Aptly runs on the offline node in the Swarm

cluster/<cluster_name=>/infra/apt.yml.

mode, use

e If Aptly runs in the non-Swarm mode, open the file with Aptly configuration on the

cluster level.

4. If NGINX is not enabled or not configured through Salt for the offline node, include the

following class on the cluster level for the node that runs Aptly:

- system.nginx.server.single

5. Configure the Aptly NGINX site using the example below. Correlate the port and host

parameters.

Note

configuration.

If Aptly runs in the non-Swarm mode, skip the aptly public section in the NGINX site

nginx:
server:
user:
aptly user:
enabled: true
password: <aptly user password>
htpasswd: .htpasswd_aptly
site:

©2025, Mirantis Inc.

Page 369

Mirantis Cloud Platform Deployment Guide

aptly_api:
enabled: true
type: nginx_proxy
name: aptly_api
auth:
engine: basic
htpasswd: .htpasswd_aptly
proxy:
host: 127.0.0.1
port: 18084
protocol: http
size: 1G
host:
name: <server_name>.<domain>.local
port: 8080
aptly_public:
enabled: true
type: nginx_proxy
name: aptly_public
auth:
engine: basic
htpasswd: .htpasswd_aptly
proxy:
host: 127.0.0.1
port: 18085
protocol: http
size: 1G
host:
name: <server_name>.<domain>.local
port: 80

6. Apply the nginx.server state on the Aptly API node:
* If Aptly runs on the offline node in the Swarm mode:
salt -C 'l@docker:client:stack:aptly' state.apply nginx.server
* If Aptly runs in the non-Swarm mode:

salt -C 'l@aptly:server' state.apply nginx.server

Once done, access to Aptly APl is granted through <aptly user>:<aptly user_password>.
Now, proceed to Enable authentication for Aptly repositories.

©2025, Mirantis Inc. Page 370

Mirantis Cloud Platform Deployment Guide

Enable authentication for Aptly repositories

After you have configured authentication through HAProxy or NGINX as described in Configure
Aptly authentication through HAProxy or Configure Aptly authentication through NGINX, enable
authentication for Aptly repositories.

To enable authentication for Aptly repositories:

1. Log in to the Salt Master node.

2. Select from the following options:

* For MCP versions starting from 2019.2.7, specify the following parameters in the
linux:system:repo pillar in cluster/<cluster_ name>/infra/init.ymil:

linux:
system:
common_repo_secured:
user: aptly user
password: <aptly user_password>
secured repos: ['all']

Specify all in the secured repos parameter to enable authentication for all available
repositories. To enable authentication for a list of repositories, specify them within
secured_repos. For example:

linux:
system:

common_repo_secured:
user: aptly_user
password: <aptly user password>
secured _repos: ['testl’, 'test2']
repo:
testl:

test2:

test3:
secure: False

In the example above, the testl and test2 repositories will be secured. However, the
repo parameter has precedence over common_repo _secured. Therefore, the test3
repository will not be secured.

* For MCP versions prior to 2019.2.7, specify the entire pillar structure in the
configuration files of the Aptly repositories. For details, see Use secured sources for
mirrors, repositories, and files.

©2025, Mirantis Inc. Page 371

Mirantis Cloud Platform Deployment Guide

For example:

linux:
system:

common_repo_secured:
arch: deb
protocol: http
user: aptly user
password: <aptly user_password>
distribution: stable
component: main
repo:
testl:
secure: true
url: <mirror_address>/ubuntu
test2:
secure: true
url: <mirror_address>/ubuntu

3. Apply the new Linux repository configuration on the nodes that are using Aptly:

salt -C '<target_compound>" saltutil.sync_all
salt -C '<target_compound>' state.apply linux.system.repo

4. If you use MAAS, also enable authentication for Aptly repositories for MAAS:

1. Obtain the Aptly repositories for MAAS. For example:

salt-call pillar.get _param:maas_region_main_archive
local:
http://10.10.0.14/update/proposed//ubuntu/

salt-call pillar.get _param:maas_region_boot_sources maas_ephemeral v3 bs_url
local:
http://10.10.0.14:8078/2019.2.0/maas-ephemeral-v3/

salt-call pillar.get maas:cluster:saltstack repo_trusty
local:
deb [arch=amd64] http://10.10.0.14/2019.2.0//saltstack-2017.7//trusty/ trusty main

salt-call pillar.get maas:cluster:saltstack_repo_xenial
local:
deb [arch=amd64] http://10.10.0.14/2019.2.0//saltstack-2017.7//xenial/ xenial main

2.In the cluster/<name>/infra/maas.yml file, specify the following pillar using the
obtained repositories and Aptly credentials. For example:

©2025, Mirantis Inc. Page 372

Mirantis Cloud Platform Deployment Guide

parameters:
_param:
maas_region_main_archive: http://aptly_user:<aptly_user_password>@10.10.0.14/update/proposed//ubuntu/
maas_region_boot_sources_maas_ephemeral_v3_bs_url: http://aptly_user:<aptly_user_password>@10.10.0.14:8078/2019.2.0/maas-ephemeral-v3/
maas:
cluster:
saltstack_repo_trusty: deb [arch=amd64] http://aptly_user:<aptly_user_password>@10.10.0.14/2019.2.0//saltstack-2017.7//trusty/ trusty main
saltstack_repo_xenial: deb [arch=amd64] http://aptly_user:<aptly_user_password>@10.10.0.14/2019.2.0//saltstack-2017.7//xenial/ xenial main

3. Apply the MAAS configuration changes:

salt -C 'l@salt:master' saltutil.sync_all
salt -C 'l@salt:master' state.sls maas

©2025, Mirantis Inc. Page 373

Mirantis Cloud Platform Deployment Guide

Configure PXE booting over UEFI

This section explains how to configure the Preboot Execution Environment (PXE) to boot a
hardware server from the network over Unified Extensible Firmware Interface (UEFI), which
details the interface between the platform firmware and the operating system at boot time.

During the manual MCP infrastructure deployment, the PXE boot takes place when you add new
physical servers that are not yet loaded with an operating system to your deployment. The
Foundation node is installed with all the necessary software from a virtual machine image. All
other hardware servers are installed remotely by MAAS using PXE boot. If required, you can
configure a server to boot from network over UEFI.

To configure the UEFI network boot:

1. Configure the server in BIOS to use UEFI on boot time:

1. On the Advanced tab, set the Launch Storage OpROM policy option to UEFI only:

Aptio Setup Utility - Copyright (C) 2012 American Megatrends, Inc.

Launch s ‘e OpROM policy [UEFTI only]

PROM policy

2. 0On the Boot tab, specify the UEFI network connection as the first boot device. For
example:

Aptio Setup Utility - Copyright] American Megatrends, Inc.

1st Boot Dewice [UEFI: IP4 Intel(R...]

1st Boot Device

M17S

Intel(R) I35 ahit Metwork Connection

2. During comissioning through MAAS, verify that the server uses UEFI. For example:

©2025, Mirantis Inc. Page 374

Mirantis Cloud Platform Deployment Guide

ect boot de

UEFI: IP4 Intel(R
ubuntu

UEFI: Built-in
WEFTI: IP4 In
UEFI: IP4 In

ubuntu (PO:

Note

If you perform standard PXE boot, the MAAS commissioning process will not recognize
UEFI.

Seealso

* Provision physical nodes using MAAS

©2025, Mirantis Inc. Page 375

Mirantis Cloud Platform Deployment Guide

Manage kernel version

Note

This feature is available starting from the MCP 2019.2.7 maintenance update. Before
using the feature, follow the steps described in Apply maintenance updates.

During a node provisioning, the default image kernel version is set by MAAS. If the node is not
provisioned by MAAS, the kernel version is taken from the node image. However, you can
manually configure the kernel version as required to control which kernel version to install.

To manage the kernel version:

1. Open your Git project repository with the Reclass model on the cluster level.

2. In configuration files for the required nodes, specify the following example pillar. For
example, use infra/config/init.yml for the cfg node and openstack/proxy.yml for the prx
nodes.

linux:
system:
kernel:
type: generic
extra: true
headers: true
version: 4.15.0-65
hwe:
type: hwe
version: 16.04
kernel_version: 4.15.0.65

3. Select from the following options:

¢ If you perform the changes before running an MCP cluster deployment or before adding
new nodes, proceed with the cluster deployment since the changes apply
automatically.

e If you perform the changes after the MCP cluster deployment, apply the following
states from the Salt Master node:

salt "*' saltutil.sync_all
salt '*' state.sls linux.system.kernel

©2025, Mirantis Inc. Page 376

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-7/mu-7-apply-updates.html

Mirantis Cloud Platform Deployment Guide

Add a custom disk layout per node in the MCP model

In MAAS, you can define the disk layout, either flat or Logical Volume Manager (LVM), as well as
the partitioning schema per server. This section describes how to define these parameters in the
MAAS section of the MCP model. The disk configuration applies during the deployment process. If
you want to define the disk configuration after deployment, you can use salt-formula-linux that
also has a capability to set up LVM partitioning. But the whole definition for each Volume Group
must be either in the maas or linux section, since the linux state cannot override or extend an
existing Volume Group created using MAAS but can create a new one.

Caution!

You can define the disk configuration in the model before the deployment starts. But be
aware that enforcing of this configuration to MAAS using the salt state must be done after
servers are commissioned and before they are deployed. Basically,
maas.machines.storage works only if a server is in the READY state.

Caution!

The maas.machines.storage state overlaps with the linux.storage state. Therefore, we
recommend using only one of them. If your deployment requires both, be aware that:

e The linux.storage configuration must match the maas.machines.storage
configuration.

* MAAS may use an inexplicit mapping. For example, the following MAAS configuration
will create an inexplicit mapping to sdal. And this specific sdal device must be
defined in the linux.storage configuration.

maas:

vgo:
type: lvm
devices:
- sda

You can use several options to design the disk layout in a deployment depending on specific use
cases. This section includes three most common examples that can be combined to get your
desired configuration.

To define a different disk layout with custom parameters

©2025, Mirantis Inc. Page 377

Mirantis Cloud Platform Deployment Guide

The default layouts used by MAAS are flat and Logical Volume Manager (LVM). Flat layout
creates a root partition on the first disk of a server. LVM creates a Volume Group on this partition
with one volume per root. By default, in both types of disk layout, the entire space on the first
disk is used. If you want to change this behavior, redefine the disk layout parameters.

The following examples illustrate a modified configuration of the default values for partition size
as well as LVM names for Volume Group and Logical Volume:

* Flat layout:

maas:
region:
machines:
serverl:
disk_layout:

type: flat
root_size: 10G #sda disk has more then 10G
root_device: sda
bootable_device: sda

* LVM layout:

maas:
region:
machines:
serverl:
disk layout:

type: lvm
root_size: 20G #sda disk has more then 20G
root_device: sda
bootable_device: sda
volume_group: vg0
volume_name: root
volume_size: 10G #If not defined, whole root partition is used.

Caution!

When defining the disk layout in the model, do not modify the rest of the disk using the
MAAS dashboard. Each run of maas.machines.storage deletes and recreates the disk
configuration of a server. Currently, this state is not idempotent.

To define a custom partitioning schema

To define a more complex configuration for disks, use the disk section under the disk layout
parameter.

©2025, Mirantis Inc. Page 378

Mirantis Cloud Platform Deployment Guide

The following example illustrates how to create partitions on the sda disk and a Volume Group
with Logical Volumes on the sdb disk. Be aware that sdb is also defined without any partitioning
schema. Therefore, you can enforce no partition to be present on sdb. Also, due to the
volume_groupl dependency on this device, it must be defined with some configuration in the
model. In the example below, it has no partitioning schema.

Example of creating partitions and Logical Volumes:

maas:
region:
machines:
server3:
disk_layout:
type: custom
bootable_device: sda
disk:
sda:
type: physical
partition_schema:
partl:
size: 10G
type: ext4
mount: '/’
part2:
size: 2G
part3:
size: 3G
sdb:
type: physical
volume_groupl:
type: lvm
devices:
- sdb
volume:
tmp:
size: 5G
type: ext4
mount: '/tmp'
log:
size: 7G
type: ext4
mount: '/var/log'

©2025, Mirantis Inc. Page 379

Mirantis Cloud Platform Deployment Guide

Caution!

The naming convention for partition in MAAS does not allow using custom names.
Therefore, key names in YAML for partition are always partl, part2, ..., partN.

To define the software RAID

Using the disk section from the previous example, you can create the software RAID on servers.
You can use this device for LVM or you can define a partitioning schema directly on this device.

The following example illustrates how to create raid 1 on sda and sdb with the partitioning
schema. In this example, we use flat layout that creates a root partition on sda, but this partition
is eventually deleted because sda is defined without any partitioning schema.

Example of creating the software RAID disks:

maas:
region:
machines:
server3:
disk _layout:
type: custom
bootable_device: sda
disk:
sda:
type: physical
sdb:
type: physical
mdO:
type: raid
level: 1
devices:
- sda
- sdb
partition_schema:
partl:
size: 10G
type: ext4
mount: '/'
part2:
size: 5G
part3:
size: 25G

To apply changes to MAAS

©2025, Mirantis Inc. Page 380

Mirantis Cloud Platform Deployment Guide

To enforce the disk configuration on servers in MAAS, run the maas state on a node where the
MAAS model is included. Usually, this is the cfgO1 node.

salt-call state.sls maas.machines.storage

Now, proceed with the MCP deployment depending on your use case as described in Provision
physical nodes using MAAS.

©2025, Mirantis Inc. Page 381

Mirantis Cloud Platform Deployment Guide

Enable NTP authentication

This section describes how to enable Network Time Protocol (NTP) authentication in a
deployment model and apply it to your environment.

To configure authentication for NTP:

1. Log in to the Salt Master node.

2. Create the classes/cluster/<cluster name>/infra/ntp_auth.yml file with the following
configuration as an example:

ntp:
client:
enabled: true
auth:
enabled: true
secrets:
1:
secret_type: 'M'
secret: '<Runrabbitrundigthath>'
trustedkey: true
2:
secret_type: 'M'
secret: '<Howiwishyouwereherew>'
trustedkey: true
stratum:
primary:
server: <ntpl.example.com>
key id: 1
secondary:
server: <ntp2.example.com>
key _id: 2

In the secrets and stratum sections, specify your own keys and strata servers accordingly.

The key id parameter for each strata server represents the id of a secret from the secrets
section.

The above configuration example enables authentication for two servers. For a specific use
case, see README.rst at NTP Salt formula.

3. In the classes/cluster/<cluster name>/infra/init.yml file, include the following class to
distribute the settings across all nodes:

classes:
- cluster.<cluster_name=>.infra.ntp_auth

4. Apply the ntp state on the Salt Master node:

©2025, Mirantis Inc. Page 382

https://gerrit.mcp.mirantis.com/gitweb?p=salt-formulas/ntp.git;a=tree;h=refs/heads/master;hb=refs/heads/master

Mirantis Cloud Platform Deployment Guide

salt "*' state.sls ntp

Seealso
* ntp-genkeys

* MCP Operations Guide: Configure multiple NTP servers

©2025, Mirantis Inc. Page 383

http://doc.ntp.org/4.1.1/genkeys.htm
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/drive-train-operations/configure-multi-ntp.html

Mirantis Cloud Platform Deployment Guide

Enable a watchdog

This section describes how to enable a watchdog in your MCP cluster and applies to both existing
and new MCP deployments.

Note

This feature is available as technical preview. Use such configuration for testing and
evaluation purposes only.

The watchdog detects and recovers servers from serious malfunctions which can include
hardware faults as well as program errors. While operating normally, the server resets the
watchdog preventing it from generating a timeout signal. Otherwise, the watchdog initiates
corrective actions to restore the normal operation of a system.

This functionality can be implemented through either a watchdog timer, which is a hardware
device, or a software-only softdog driver.

To install and configure the watchdog:

1. Log in to the Salt Master node.

2.1n the classes/cluster/<cluster_name>/init.yml or
classes/cluster/<cluster_name>/init/init.yml file of your Reclass model, include the following
class:
classes:

- system.watchdog.server

3. In the classes/cluster/<cluster_name>/infra/config.yml file of your Reclass model, add the
watchdog server configuration. For example:

watchdog:
server:
admin: root
enabled: true
interval: 1
log_dir: /var/log/watchdog
realtime: yes
timeout: 60
device: /dev/watchdog

Salt Stack will automatically detect the necessary kernel module
which needs to be loaded (ex. hpwdt, iTCO_wdt).

If the hardware model is not predefined in map.jinja, the default
watchdog driver is used: softdog

You may specify the kernel module parameters if needed:
kernel:

©2025, Mirantis Inc. Page 384

Mirantis Cloud Platform Deployment Guide

parameter:
soft_panic: 1
parameter: value
parameter_only_without_value: none

4. Select from the following options:

* If you are performing the initial deployment of your environment, the watchdog service
will be installed during the Finalize stage of the Deploy - OpenStack pipeline. See
Deploy an OpenStack environment for details.

* If you are enabling the watchdog service in an existing environment, apply the changes
to the deployment model to install the service:

salt * state.sls watchdog

5. Verify that the watchdog service is enabled in your deployment:

salt * cmd.run "service watchdog status"

©2025, Mirantis Inc. Page 385

Mirantis Cloud Platform Deployment Guide

Enable the Linux Audit system

The Linux Audit system enables the system administrator to track security-relevant events by
creating an audit trail, which is a log for every action on the server. More specifically, based on
the pre-configured rules, the audit system creates log entries that record system calls. By
monitoring the events happening on your system, you can reveal violations of system security
policies and adjust the set of audit rules to prevent further misuse or unauthorized activities
within the system.

This section describes how to enable the audit system in your MCP deployment in compliance
with CIS audit benchmarks and applies to both existing and new MCP deployments. Once you
enable the audit system, the Fluentd service of StackLight LMA collects the audit logs and sends
them to Elasticsearch for storage.

To enable the Linux Audit system:

1. Log in to the Salt Master node.

2. In the classes/cluster/<cluster name>/infra/init.yml file of your Reclass model, include the
following class:

classes:
- system.auditd.server.ciscat

3. If required, configure the CIS-CAT rules depending on the needs of your deployment.

4. Select from the following options:

* If you are performing the initial deployment of your environment, the auditd service will
be installed during the MCP cluster deployment.

* If you are enabling the auditd service in an existing environment:

1. Refresh pillars and synchronize Salt modules:

salt "*' saltutil.refresh_pillar
salt "*' saltutil.sync_modules

2. Apply the salt state:

salt '*' state.sls salt

3. Apply the changes to the Reclass model by running the auditd state:

salt * state.sls auditd

5. Verify that the auditd service is enabled in your deployment:

salt * service.status auditd

©2025, Mirantis Inc. Page 386

Mirantis Cloud Platform Deployment Guide

6. Verify that the rules are being applied as expected using the auditctl tool:

salt * cmd.run "auditctl -["

©2025, Mirantis Inc. Page 387

Mirantis Cloud Platform Deployment Guide

Configure a company name for the SSH and interactive
logon disclaimer

On an SSH and interactive logon to the MCP VCP nodes, a security disclaimer displays. The
disclaimer states that an unauthorized access to or misuse of a computer system is prohibited
under the Computer Misuse Act 1990.

Note

The act is designed to protect computer users against wilful attacks and theft of
information. The act makes it an offence to access or even attempt to access a computer
system without the appropriate authorization. Therefore, if a hacker makes even
unsuccessful attempts to get into a system, they can be prosecuted using this law.

This section provides an instruction on how to configure the company name managing the
computer from which the operator is required to have authorization before proceeding.

To configure the company name in the logon disclaimer:
1. Log in to the Salt Master node.
2. Configure the company name for the SSH logon by specifying the company name in the
classes/cluster/<cluster_name=>/openssh/server/single.yml file in your Reclass model:

classes:
- service.openssh.server
- service.openssh.server.cis

parameters:

_param:
ssh_banner_company_name: COMPANY_NAME

3. Configure the company name for the interactive logon by specifying the company name in
the classes/cluster/<cluster name=>/linux/system/banner.yml file in your Reclass model:

parameters:
_param:
banner_company_name: COMPANY_NAME_HERE

4. Apply the changes:

salt -C 'l@salt:control' state.sls openssh.server.service linux.system

Now, the logon disclaimer should display the configured company name.

©2025, Mirantis Inc. Page 388

Mirantis Cloud Platform Deployment Guide

Configure secure SSH ciphers

For security and compliance purposes, the following SSH ciphers are disabled in MCP:

e arcfour
e arcfourl28

e arcfour256

The default ciphers can be changed in the
classes/cluster/<cluster name>/openssh/server/single.yml file of your Reclass model to satisfy
the cluster needs. Mirantis highly recommends adjusting the cipher suites according to
compliance requirements as well as applying and testing the changes on staging environments
first.

The structure with enabled ciphers from openssh/server/single.yml is converted to a
comma-separated string in /etc/ssh/sshd_config. For a list of all supported ciphers, inspect
man sshd_config.5 on any node of your MCP cluster.

Warning

The following instruction can potentially lead to security or compliance issues on your
cluster. Therefore, proceed at your own risk.

To configure SSH ciphers:
1. Log in to the Salt Master node.

2. In the classes/cluster/<cluster_name>/openssh/server/single.yml file of your Reclass model,
add the supported SSH ciphers under the ciphers parameter as follows:

parameters:
openssh:
server:
ciphers:
"<cipher_name>":
enabled: True

The following SSH ciphers are enabled by default in MCP:

parameters:
openssh:
server:
ciphers:

"3des-cbc":
enabled: True

"aes128-cbc":
enabled: True

©2025, Mirantis Inc. Page 389

Mirantis Cloud Platform Deployment Guide

"aes192-cbc":
enabled: True
"aes256-cbc":
enabled: True
"aes128-ctr":
enabled: True
"aes192-ctr":
enabled: True
"aes256-ctr":
enabled: True
"aesl28-gcm@openssh.com":
enabled: True
"aes256-gcm@openssh.com™:
enabled: True
"chacha20-polyl305@openssh.com":
enabled: True
"rijndael-cbc@lysator.liu.se":
enabled: True

3. Apply the changes:

salt -C 'l@salt:control' state.sls openssh.server.service linux.system

©2025, Mirantis Inc. Page 390

Mirantis Cloud Platform Deployment Guide

Set custom Transmit Queue Length

The Transmit Queue Length (txqueuelen) is a TCP/IP stack network interface value that sets the
number of packets allowed per kernel transmit queue of a network interface device.

By default, the txqueuelen value for TAP interfaces is set to 1000 in the MCP Build ID 2019.2.0
and to 10000 in the MCP 2019.2.3 maintenance update. You can also tune the txqueuelen value
for TAP interfaces to optimize VM network performance under high load in certain scenarios.

To set a custom Transmit Queue Length value for TAP interfaces:

1.
2.

Log in to the Salt Master node.

Set the tap_custom_txqueuelen parameter for the OpenContrail or OVS compute nodes in
one of the following files as required:

* For the OpenContrail compute nodes, modify the
cluster/<cluster_name=>/opencontrail/networking/compute.yml file.
* For the ovs compute nodes, modify the
cluster/<cluster_name>/openstack/networking/compute.yml file.
Example:
linux:
network:

tap_custom_txqueuelen: 20000

. Apply the change:

salt "*' state.sls linux

. Verify that the txqueuelen value has changed:

1. Log in to the target node.

2. Verify the output of the ifconfig <interface_name>. The txqueuelen value should equal
the newly set value.

©2025, Mirantis Inc. Page 391

Mirantis Cloud Platform Deployment Guide

Configure a CPU model

The Compute service enables you to control the guest host CPU model that is exposed to KVM
virtual machines. The use cases include:

* Maximization of performance of virtual machines by exposing new host CPU features to the
guest

e Ensuring a consistent default CPU value across all machines by removing the reliance on

the QEMU variable default values
You can define the CPU model for your deployment by setting the cpu_mode parameter on the
Reclass cluster level. A universal default value for this parameter does not exist as the
configuration depends a lot on a particular use case, workload needs, and compute hardware.
Therefore, picking up the value for the cpu_mode parameter is worth careful consideration.
The supported values include:
host-model

Clone the host CPU feature flags
host-passthrough

Use the host CPU model
custom

Use the CPU model defined with [libvirtlcpu_model
none

Do not set a specific CPU model. For example, with the [libvirt] virt type as KVM/QEMU, the

default CPU model from QEMU will be used providing a basic set of CPU features that are
compatible with most hosts

The cpu_mode parameter directly affects the possibility of performing the VM migration. To be
able to migrate a VM from one compute host to another one, the destination host must support
the CPU flags of the guest host. If a cloud environment is running on a heterogeneous hardware,
the cpu_mode parameter should be set to custom. Though, such configuration will decrease the
workload performance.

Starting from the MCP maintenance update 2019.2.10, you can use the custom CpuFlagsFilter
Nova scheduler filter. The filter works only for live migrations and ensures that the CPU features
of a live migration source host match the target host. Use the CpuFlagsFilter filter only if your
deployment meets the following criteria:

* The CPU mode is set to host-passthrough or host-model.
* The OpenStack compute nodes have heterogeneous CPUs.

* The OpenStack compute nodes are not organized in aggregates with the same CPU in each
aggregate.

©2025, Mirantis Inc. Page 392

Mirantis Cloud Platform Deployment Guide

Configure Galera parameters

This section provides an instruction on how to configure the parameters of the MySQL my.cnf

configuration file by overriding them on the cluster level of the Reclass model.

Note

The capability to configure the tmp_table size, max_heap table size, and
table_open _cache parameters is available starting from the 2019.2.5 maintenance
update. To enable the feature, follow the steps described in Apply maintenance updates.

To configure parameters of the MySQL configuration file:

1. Open your project Git repository with the Reclass model on the cluster level.

2. In cluster/<cluster name=>/openstack/database/init.yml, define the following parameters as

required. The available values for <role> are master or slave.

Warning

The following list may be not exhaustive.

Galera configurable parameters

Section Galera parameter Pillar parameter key name

[mysql] ssl-ca galera:<role>:ssl:ca_file !
ssl-cert galera:<role>:ssl:cert_file 1
ssl-key galera:<role>:ssl:key file 1

[mysqld] | bind-address galera:<role>:bind:address
max_connections galera:<role>:max_connections
log_error galera:<role>:error_log_path 2
table_open_cache galera:<role>:table_open_cache
tmp_table_size galera:<role>:tmp_table _size
max_heap_table size galera:<role>:max_heap_table_size
innodb_buffer_pool_size galera:<role>:innodb_buffer_pool _size
innodb_read_io_threads galera:<role>:innodb_read io_threads
innodb_write_io_threads galera:<role>:innodb_write io_threads
wsrep_provider galera:<role>:wsrep_provider

©2025, Mirantis Inc. Page 393

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-5/mu-5-apply-updates.html

Mirantis Cloud Platform Deployment Guide

wsrep_slave_threads

galera:<role>:wsrep_slave_threads

wsrep_sst auth

(galera:<role>:sst:user):(galera:<role>:sst

:password)

wsrep_node_address

galera:<role>:bind:address

[xtrabac
kupl]

parallel

galera:<role>:xtrabackup_parallel

For example:

parameters:
galera:
slave:
bind:
address: 127.0.0.1
1(1, 2, 3) Requires galera:<role>:ssl:enabled == true.
Requires galera:<role>:error_log_enabled == true.
3 The parameter is concatenated from two pillar values.

©2025, Mirantis Inc.

Page 394

Mirantis Cloud Platform Deployment Guide

Configure HAProxy parameters

Note

This feature is available starting from the MCP 2019.2.5 maintenance update. Before
enabling the feature, follow the steps described in Apply maintenance updates.

This section provides an instruction on how to configure the parameters of the HAProxy
configuration file by overriding them on the cluster level of the Reclass model. For the list of all

available global parameters, see the official HAProxy documentation.

To configure global parameters of the HAProxy configuration file:

1. Open your project Git repository with the Reclass model on the cluster level.

2. In cluster/<cluster_name>/openstack/init.yml, define the parameters in the global section

using the haproxy:proxy:global pillar and the following pattern:

parameters:
haproxy:
proxy:
global:
<key>: <value>

In the configuration above, <key> is any required parameter and <value> is its value that
can be a number, string, or boolean. Replace all dot . signs in the parameter key names with
undescores _in the pillar definiton. For example, the tune.ssl.cachesize parameter must be

tune_ssl cachesize in the pillar configuration.

Example configuration:

parameters:
haproxy:
proxy:
global:
tune_ssl_cachesize: 4

Some keys in the global configuration have dedicated configurable pillar keys in the pillar
structure and are kept for the backward compatibility. If both parameters are defined, the
one from haproxy:proxy:global pillar has higher priority and overwrites any other values.
For example, the nbproc value can be defined with both haproxy:proxy:nbproc and

haproxy:proxy:global:nbproc parameters.

The timeout values are assumed to be defined in ms if no other unit is specifically defined.

For details, see HAProxy documentation.

©2025, Mirantis Inc. Page 395

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-5/mu-5-apply-updates.html
https://cbonte.github.io/haproxy-dconv/1.6/configuration.html#3
http://cbonte.github.io/haproxy-dconv/1.6/configuration.html#2.4

Mirantis Cloud Platform Deployment Guide

Use secured sources for mirrors, repositories, and files

Note

This feature is available starting from the MCP 2019.2.5 maintenance update. Before
enabling the feature, follow the steps described in Apply maintenance updates.

This section provides an instruction on how to configure your cluster model if you plan to
download Debian packages, Git mirrors, VM images, or any files required for cluster deployment
from a secured HTTP/HTTPS server that can be accessible through login credentials. Such
functionality may be required for offline installations when internal mirrors are secured.

If the source HTTP/HTTPS server is secured, the source or url parameters should still include the
user ID and password, for example, http://user:password@example.mirantis.com/xenial.
Previously, MCP did not enable you to use encrypted pillar inside another variable. Starting from
MCP 2019.2.5, you can use a secured HTTP/HTTPS server even if the secrets encryption feature
in Reclass is enabled as described in Enable all secrets encryption.

Warning

We recommend that you apply the procedure before the cluster deployment to avoid the
cluster breakdown and to automatically apply the changes.

To define secured APT repositories on the cluster nodes:

Note

The exemplary default structure of the APT repositories definition in the cluster model:

linux:
system:
repo:
repo-example:
source: 'deb http://example.com/ubuntu xenial main'

* Define a secured APT repository, for example:

linux:
system:
repo:

©2025, Mirantis Inc. Page 396

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-5/mu-5-apply-updates.html

Mirantis Cloud Platform Deployment Guide

repo-example:
secure: true
url: example.com/ubuntu
arch: deb
protocol: http
user: foo
password: bar
distribution: xenial
component: main

* Define the APT repositories in case of several APT repositories under the same HTTP/HTTPS
secured server with the same credentials. The exemplary structure:

linux:
system:
common_repo_secured:
arch: deb
protocol: http
user: foo
password: bar
distribution: xenial
component: main
repo:
testl:
secure: true
url: examplel.com/ubuntu
test2:
secure: true
url: example2.com/ubuntu

Warning

We do not recommend that you apply the changes after the MCP cluster deployment.
Though, on your own responsibility, you can apply the changes as follows:

1. Log in to the Salt Master node.
2. Run:

salt "*' saltutil.refresh_pillar
salt "*' state.apply linux.system.repo

To define a secured file source on cluster nodes:

©2025, Mirantis Inc. Page 397

Mirantis Cloud Platform Deployment Guide

Note

linux:
system:
file:
/tmp/sample.txt:

sample2.txt:
name: /tmp/sample2.txt

The exemplary default structure of the file sources definition in the cluster model:

source: http://techslides.com/demos/samples/sample.txt
source_hash: 5452459724e85b4e12277d5f8aab8fc9

source: http://techslides.com/demos/samples/sample.txt

Define a secured file source, for example:

linux:
system:
file:
sample3.tar.gz:
name: /tmp/sample3.tar.gz
secured_source:
protocol: http #optional
user: username
password: password
url: wordpress.org/latest.tar.gz
secured_hash: #optional
url: wordpress.org/latest.tar.gz.md5

Warning

1. Log in to the Salt Master node.
2. Run:

salt "*' saltutil.refresh_pillar

salt "*' state.apply linux.system.repo

We do not recommend that you apply the changes after the MCP cluster deployment.
Though, on your own responsibility, you can apply the changes as follows:

To define a secured image source on cluster nodes:

©2025, Mirantis Inc.

Page 398

Mirantis Cloud Platform Deployment Guide

Note

The exemplary default structure of the image sources definition in cluster model:

salt:
control:
cluster:
cluster-name:
node:
nodel:

provider: node0l.domain.com
size: medium
image: http://ubuntu.com/download/ubuntu.qcow?

* Define a secured image sources. The exemplary structure:

salt:
control:
cluster:
cluster-name:
node:
nodel:
provider: node01l.domain.com
size: medium
image_source:
secured: true
protocol: http
user: foo
password: bar
url_prefix: ubuntu.com/download
url_path: ubuntu.qcow?2

* Define the image sources in case of several images from the same HTTP/HTTPS secured
server with the same credentials. The exemplary structure:

salt:
control:

common_image_source:
protocol: http
user: foo
password: bar
url_prefix: ubuntu.com/download

cluster:
cluster-name:

node:

©2025, Mirantis Inc. Page 399

Mirantis Cloud Platform Deployment Guide

nodel:
provider: node01l.domain.com
size: medium
image_source:
secured: true
url_path: ubuntu-xenial.qcow?2
node2:
provider: node02.domain.com
size: medium
image_source:
secured: true
url_path: ubuntu-bionic.qcow?2

Warning

breakdown.

Do not apply the changes after the MCP cluster deployment to avoid the cluster

To define a secured Git repositories source for CI/CD nodes:

1. Update the configuration of the Gerrit project source:

Note

gerrit:
client:
enabled: True
project:
test_salt_project:
enabled: true
upstream: https://github.com/example/library

The exemplary default structure of the Gerrit project sources in cluster model:

Define a secured Gerrit project source, fore example:

gerrit:
client:
enabled: True
project:
test_salt_project:
enabled: true

©2025, Mirantis Inc.

Page 400

Mirantis Cloud Platform Deployment Guide

upstream_secured: true

protocol: https

username: foo

password: bar

address: github.com/example/library

2. If the target Gerrit repositories are any of mcp-ci/pipeline-library or mk/mk-pipelines, or they
are required for the pipelines execution in Jenkins, add the Jenkins login credentials:

1. Navigate to the root folder of your cluster model. On the Salt Master node, this is the
/srv/salt/reclass directory.

2. Add the following parameters into
.Jclasses/cluster/<cluster_name>/infra/config/jenkins.yml for Jenkins on the Salt Master
node and ./classes/cluster/<cluster name>/cicd/control/leader.yml| for Jenkins on the
Cl/CD nodes:

parameters:
_param:
source_git_username: <ENCRYPTED_USERNAME>
source_git_password: <ENCRYPTED PASSWORD>

3. Include the system.jenkins.client.credential.source_git class into same files for both
Jenkins instances:

classes:

- system.jenkins.client.credential.source_git

Warning

We do not recommend that you apply the changes after the MCP cluster deployment.
Though, on your own responsibility, you can apply the changes as follows:

1. Log in to the Salt Master node.
2. Refresh the pillars:

salt -C 'l@gerrit:client' saltutil.refresh_pillar
salt -C 'l@jenkins:client' saltutil.refresh_pillar

3. Apply the gerrit and jenkins states:

salt -C 'l@gerrit:client' state.apply gerrit.client
salt -C 'l@jenkins:client' state.apply jenkins.client

©2025, Mirantis Inc. Page 401

Mirantis Cloud Platform Deployment Guide

©2025, Mirantis Inc. Page 402

Mirantis Cloud Platform Deployment Guide

Advanced configuration

MCP exposes a humber of advanced configuration options.

©2025, Mirantis Inc. Page 403

Mirantis Cloud Platform Deployment Guide

Enable NFV features

Network Functions Virtualization (NFV) is a powerful technology that leverages virtualization of
particular network functions which allows a better flexibility in network administration and
enables you to use network hardware more efficiently.

MCP supports the following NFV features:

* Data Plane Development Kit or DPDK is a set of libraries and drivers to perform fast packet
processing in the user space that OVS/vRouter can use to move network packets processing
from a kernel to a user space. OVS/vRouter with DPDK acceleration on compute nodes
reduces the processing time of network packets transferred between a host’'s network
interface and a guest bypassing the host’s kernel. Moreover, DPDK leverages benefits of
usage of other technologies such as Huge Pages, CPU pinning, and NUMA topology
scheduling.

* SR-I0V is an extension to the PCl Express (PCle) specification that enables a network
adapter to separate access to its resources among various PCle hardware functions:
Physical Function (PF) and Virtual Functions (VFs). As a result, you can achieve near
bare-metal performance, since network devices can forward traffic directly to a VF
bypassing the host.

e Multiqueue for DPDK-based vrouters enables the scaling of packet sending/receiving
processing to the number of available vCPUs of a guest by using multiple queues.

The following table shows compatibility matrix for MCP of NFV features for different
deployments.

NFV for MCP compatibility matrix

Kern HugePa DPD SR-l NUM CPU

Host OS el ges K oV A pinning Multiqueue
OLVAS) Xenial 4.8 Yes No Yes Yes Yes Yes
Kernel Xenial 4.8 Yes No Yes Yes Yes Yes
vRouter
DPDK Trusty 4.4 Yes Yes No Yes Yes No (version
vRouter 3.2)
DPDK Xenial 4.8 Yes Yes No Yes Yes Yes
OLVAS)

©2025, Mirantis Inc. Page 404

Mirantis Cloud Platform Deployment Guide

Enable DPDK

Enabling Data Plane Development Kit (DPDK) strongly requires Huge Pages configuration before
an application start. To perform fast packet processing, a DPDK-based network application may
require to use isolated CPUs and resources spread on the multi-NUMA topology. These
configurations are common for both OVS and OpenContrail.

Warning

Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

©2025, Mirantis Inc. Page 405

Mirantis Cloud Platform Deployment Guide

Limitations

The usage of the OVS DPDK or OpenContrail DPDK features in MCP includes the following
limitations.

OVS DPDK limitations:

* OVS DPDK can be used only for tenant traffic
e Compute with DPDK cannot be used for non-DPDK workload

* When deployed with StackLight LMA, the libvirt domain_interface_stats * metrics are not
available

OpenContrail DPDK limitations:

* When deployed with StackLight LMA, the libvirt domain_interface_stats * metrics are not
available

©2025, Mirantis Inc. Page 406

Mirantis Cloud Platform Deployment Guide

Enable OVS DPDK
This section explains how to prepare for and enable OVS DPDK in MCP.

Warning

Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

©2025, Mirantis Inc. Page 407

Mirantis Cloud Platform Deployment Guide

Prepare your environment for OVS DPDK

This section describes the initialization steps needed to prepare your deployment for the
enablement of the OVS DPDK feature.

Warning

Before you proceed with the DPDK enabling, verify that you have performed the following
procedures:

1. Enable Huge Pages
2. Configure NUMA and CPU pinning architecture

To prepare your environment for OVS DPDK:

1. Specify the DPDK driver.

DPDK Environment Abstract Layer(EAL) uses either Userspace 1/O (UIO) module or VFIO to
provide userspace access on low-level buffers. MCP supports both configurations.

Note

To use VFIO approach, verify that both kernel and BIOS are configured to use I/O
virtualization. This requirement is similar to SR-IOV Intel IOMMU and VT-d being
enabled.

To use one of Userspace I/O drivers, define the compute_dpdk_driver parameter. For
example:

compute_dpdk_driver: uio # vfio
2. In respect to the parameter specified above, configure the DPDK physical driver. There is

one-to-one dependency of what driver must be selected for physical DPDK NIC based on the
configured 1/O mechanism. For example:

dpdkO:
.d“river: igb_uio # vfio-pci
3. To enable the physical DPDK device to run several RX/TX queues for better packet

processing, configure the following parameter specifying the number of queues to be used.
For example:

©2025, Mirantis Inc. Page 408

Mirantis Cloud Platform Deployment Guide

dpdkO:

n_rxq: 2 # number of RX/TX queues

Note

The increasing number of queues results in PMD threads consuming more cycles to
serve physical device. We strongly recommend that you configure the number of
physical queues not greater that CPUs configured for the DPDK-based application.

©2025, Mirantis Inc. Page 409

Mirantis Cloud Platform Deployment Guide

Enable OVS DPDK support

Before you proceed with the procedure, verify that you have performed the preparatory steps

described in Prepare your environment for OVS DPDK.

While enabling DPDK for Neutron Open vSwitch, you can configure a number of settings specific
to your environment that assist in optimizing your network performance, such as manual pinning

and others.
To enable OVS DPDK:

1. Verify your NUMA nodes on the host operating system to see what vCPUs are available. For

example:

Iscpu | grep NUMA
NUMA node(s): 1
NUMA nodeO CPU(s): 0-11

2. Include the class to cluster.<name=>.openstack.compute and configure the dpdkO0 interface.

Select from the following options:

* Single interface NIC dedicated for DPDK:

- system.neutron.compute.nfv.dpdk

parameters:
linux:
network:
interfaces:

other interface setup

dpdkO:
name: ${ param:dpdk0_name}
pci: ${ param:dpdk0_pci}
driver: igb_uio
enabled: true
type: dpdk _ovs_port
n_rxq: 2
br-prv:
enabled: true
type: dpdk _ovs bridge

e OVS DPDK bond with 2 dedicated NICs

- system.neutron.compute.nfv.dpdk

parameters:

©2025, Mirantis Inc.

Page 410

Mirantis Cloud Platform Deployment Guide

linux:
network:
interfaces:
other interface setup

dpdko:

name: ${ param:dpdkO_name}
pci: ${ param:dpdk0_pci}
driver: igb_uio
bond: dpdkbondl
enabled: true
type: dpdk _ovs_port
n_rxq: 2
dpdkl:
name: ${ param:dpdkl name}
pci: ${ param:dpdkl pci}
driver: igb_uio
bond: dpdkbondl
enabled: true
type: dpdk _ovs_port
n_rxq: 2
dpdkbondl:
enabled: true
bridge: br-prv
type: dpdk_ovs_bond
mode: active-backup
br-prv:
enabled: true
type: dpdk_ovs_bridge

3. Calculate the hexadecimal coremask.

As well as for OpenContrail, OVS-DPDK needs logical cores parameter to be set. Open
vSwitch requires two parameters: Icore mask to DPDK processes and PMD mask to spawn
threads for poll-mode packet processing drivers. Both parameters must be calculated
respectively to isolated CPUs and are representing hexadecimal numbers. For example, if
we need to take single CPU number 2 for Open vSwitch and 4 CPUs with numbers 5, 6, 10
and 12 for forwarding PMD threads, we need to populate parameters below with the

following numbers:

* The Icores mask example:

Cores

Bit)
Hexadecimal

o
1
(w/HT)2322212019181716151413121109876543210 Coremas| k

24 00 O0OOOOOOOOOOOO0000000100 Ox2

* PMD CPU mask example:

C

Bit .
Hexadecimal 1l

ores
1
(W/HT)2322212019181716151413121109876543210 Ce

24 00O0O0OOOOOOOOTI1O010001100000 O

oooooo

x1460

©2025, Mirantis Inc.

Page 411

Mirantis Cloud Platform Deployment Guide

4. Define the parameters in the cluster.<name>.openstack.init if they are the same for all
compute nodes. Otherwise, specify them in cluster.<name>.infra.config:

* dpdk0_name
Name of port being added to OVS bridge
* dpdkO_pci
PCI ID of physical device being added as a DPDK physical interface
» compute_dpdk_driver
Kernel module to provide userspace 1/O support
e compute_ovs _pmd_cpu_mask
Hexadecimal mask of CPUs to run DPDK Poll-mode drivers
» compute_ovs_dpdk socket mem
Set of amount HugePages in Megabytes to be used by OVS-DPDK daemon taken for
each NUMA node. Set size is equal to NUMA nodes count, elements are divided by
comma
* compute_ovs _dpdk_Icore_mask
Hexadecimal mask of DPDK Icore parameter used to run DPDK processes

* compute_ovs_memory _channels
Number of memory channels to be used.
Example

compute_dpdk_driver: uio
compute_ovs_pmd_cpu_mask: "0x6"
compute_ovs_dpdk socket mem: "1024"
compute_ovs_dpdk_Icore_mask: "0x400"
compute_ovs_memory_channels: "2"

5. Optionally, map the port RX queues to specific CPU cores.

Configuring port queue pinning manually may help to achieve maximum network
performance through matching the ports that run specific workloads with specific CPU
cores. Each port can process a certain number of Transmit and Receive (RX/TX) operations,
therefore it is up to the Network Administrator to decide on the most efficient port mapping.
Keeping a constant polling rate on some performance critical ports is essential in achieving
best possible performance.

Example

dpdkO:

i)“md_rxq_affinity: "0:1,1:2"

The example above illustrates pinning of the queue 0 to core 1 and pinning of the queue 1
to core 2, where cores are taken in accordance with pmd_cpu_mask.

©2025, Mirantis Inc. Page 412

Mirantis Cloud Platform Deployment Guide

6. Specify the MAC address and in some cases PCI for every node.

Example

openstack_compute_node02:
name: ${ param:openstack compute _node02_hostname}
domain: ${ param:cluster_domain}
classes:
- cluster.${ param:cluster_name}.openstack.compute
params:
salt master_host: ${ param:reclass_config_master}
linux_system_codename: xenial
dpdk0_name: enp5s0f1
dpdkl name: enp5s0f2
dpdk0 pci: '""0000:05:00.1"
dpdkl pci: '""0000:05:00.2"

7. If the VXLAN neutron tenant type is selected, set the local IP address on br-prv for VXLAN
tunnel termination:

- system.neutron.compute.nfv.dpdk

parameters:
linux:
network:
interfaces:

other interface setup

br-prv:
enabled: true
type: dpdk_ovs_bridge
address: ${ param:tenant address}
netmask: 255.255.255.0

8. Select from the following options:

* If you are performing the initial deployment of your environment, proceed with further
environment configurations.

* If you are making changes to an existing environment, re-run salt configuration on the
Salt Master node:

salt "cmp*" state.sls linux.network,neutron

©2025, Mirantis Inc. Page 413

Mirantis Cloud Platform Deployment Guide

Note

For the changes to take effect, servers require a reboot.

9.1f you need to set different values for each compute node, define them in
cluster.<NAME>.infra.config.

Example

openstack_compute _node02:
name: ${ param:openstack compute node02 hostname}
domain: ${ param:cluster domain}
classes:
- cluster.${ param:cluster name}.openstack.compute
params:
salt master_host: ${ param:reclass_config_master}
linux_system_codename: xenial
dpdk0_name: enp5s0f1
dpdkl name: enp5s0f2
dpdkO_pci: '"0000:05:00.1""
dpdkl_pci: '"0000:05:00.2""
compute_dpdk_driver: uio
compute ovs pmd_cpu_mask: "0x6"
compute ovs _dpdk socket mem: "1024"
compute ovs_dpdk Icore_mask: "0x400"
compute _ovs _ memory_channels: "2"

©2025, Mirantis Inc. Page 414

Mirantis Cloud Platform Deployment Guide

Enable OpenContrail DPDK

OpenContrail 4.x uses DPDK libraries version 17.02.

Caution!

Starting from OpenContrail version 4.x, the Mellanox NICs are not supported in the
DPDK-based OpenContrail deployments.

A workload running on a DPDK vRouter does not provide better pps if an application is not
DPDK-aware. The performance result is the same as for kernel vRouter.

To enable the OpenContrail DPDK pinning:

1. Verify that you have performed the following procedures:
1. Enable Huge Pages

2. Configure NUMA and CPU pinning architecture

2. Verify your NUMA nodes on the host operating system to identify the available vCPUs. For
example:

Iscpu | grep NUMA
NUMA node(s): 1
NUMA nodeO CPU(s): 0-11

3. Include the following class to cluster.<name>.openstack.compute and configure the vhost0
interface:

classes:

- system.opencontrail.compute.dpdk

parameters:
linux:
network:
interfaces:

other interface setup

vhostO:
enabled: true
type: eth
address: ${ param:single_address}
netmask: 255.255.255.0
name_servers:

©2025, Mirantis Inc. Page 415

Mirantis Cloud Platform Deployment Guide

-8.8.8.8
-1.1.1.1

4. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

* compute_vrouter_taskset
Hexadecimal mask of CPUs used for DPDK-vRouter processes

» compute_vrouter_socket_mem

Set of amount HugePages in Megabytes to be used by vRouter-DPDK taken for each
NUMA node. Set size is equal to NUMA nodes count, elements are divided by
comma

» compute_vrouter_dpdk_pci
PCIl of a DPDK NIC. In case of BOND there must be 0000:00:00.0

5. Calculate the hexadecimal mask. To enhance vRouter with DPDK technology, several
isolated host CPUs should be used for such DPDK processes as statistics, queue
management, memory management, and poll-mode drivers. To perform this, you need to
configure the hexadecimal mask of CPUs to be consumed by vRouter-DPDK.

The way to calculate the hexadecimal mask is simple as a set of CPUs corresponds to the
bits sequence size of CPUs number. 0 on i-th place in this sequence means that CPU number
i will not be taken for usage, and 1 has the opposite meaning. Simple translation of
binary-to-hexadecimal based on bit sequence of size 24 is illustrated below (vRouter is
bound to 4 cores: 14,13,2,1.)

Cores

o Hexadecimal
(w/ HT)

9876543210 Coremasl k

—we
onN R
ST
oo r

22 22
3210
0000

oo R
o w
o~ R
oo R
o w R
SN

24 0000000110 O0x6006

6. Pass the hexadecimal mask to vRouter-DPDK command line using the following parameters.
For example:

compute_vrouter_taskset: "-c 1,2" # or hexadecimal 0x6
compute_vrouter_socket mem: '1024' # or '1024,1024' for 2 NUMA nodes

7. Specify the MAC address and in some cases PCI for every node.

Example

openstack_compute_node02:
name: ${ param:openstack_compute_node02_hostname}
domain: ${_param:cluster domain}
classes:
- cluster.${_param:cluster_name}.openstack.compute
params:
salt_master_host: ${ param:reclass_config_master}
linux_system_codename: trusty
compute_vrouter_ dpdk_mac_address: 00:1b:21:87:21:99

©2025, Mirantis Inc. Page 416

Mirantis Cloud Platform Deployment Guide

compute_vrouter_dpdk_pci: "'0000:05:00.1""
primary_first nic: enp5s0fl # NIC for vRouter bind

8. Select from the following options:

* If you are performing the initial deployment of your environment, proceed with the
further environment configurations.

* If you are making changes to an existing environment, re-run salt configuration on the
Salt Master node:

salt "cmp*" state.sls opencontrail

Note
For the changes to take effect, servers require a reboot.

9.1f you need to set different values for each compute node, define them in
cluster.<NAME>.infra.config.

Example

openstack_compute_node02:
name: ${ param:openstack compute _node02_ hostname}
domain: ${ param:cluster_domain}
classes:
- cluster.${_ param:cluster_name}.openstack.compute
params:
salt master_host: ${ param:reclass_config_master}
linux_system_codename: trusty
compute_vrouter dpdk _mac_address: 00:1b:21:87:21:99
compute_vrouter_dpdk pci: "'0000:05:00.1""
compute vrouter_taskset: "-c 1,2"
compute _vrouter_socket mem: "1024"
primary_first_nic: enp5s0fl # NIC for vRouter bind

©2025, Mirantis Inc. Page 417

Mirantis Cloud Platform Deployment Guide

Enable SR-IOV

Single Root I/0 Virtualization (SR-IOV) is an 1/O virtualization technology that allows a single PCle
device to appear as multiple PCle devices. This helps to optimize the device performance and

capacity, as well as hardware costs.

©2025, Mirantis Inc. Page 418

Mirantis Cloud Platform Deployment Guide

Prerequisites

If you want to use the SR-IOV feature with OpenContrail or Neutron OVS, your environment must
meet the following prerequisites:

* Intel Virtualization Technology for Directed 1/O (VT-d) and Active State Power Management
(ASPM) must be supported and enabled in BIOS

e Physical NIC with Virtual Function (VF) driver installed Enable ASPM (Active State Power
Management) of PCI Devices in BIOS. If required, upgrade BIOS to see ASPM option.

©2025, Mirantis Inc. Page 419

Mirantis Cloud Platform Deployment Guide

Enable generic SR-IOV configuration

The following procedure is common for both OpenVSwitch and OpenContrail. SR-IOV can be
enabled before or after installation on the MCP cluster model level.

To enable SR-I0V:

1. Include the class to cluster.<NAME=>.openstack.compute:

- system.neutron.compute.nfv.sriov

Note
By default, the metadata model contains configuration for 1 NIC dedicated for SR-IOV.

2. Set the following parameters:

* sriov_nic01_device_name
Name of the interface, where the Virtual Functions are enabled

e sriov_nic01_numvfs
Number of Virtual Functions

* sriov_nic01_physical_network
Default is physnetl, label for the physical network the interface belongs to

* sriov_unsafe_interrupts
Default is False, needs to be set to True if your hardware platform does not support
interrupt remapping
For most deployments with 1 NIC for SR-I0OV, we recommend the following configuration in
cluster.<name>.openstack.init on all compute nodes:

sriov_nic01_device_name: ethl
sriov_nic01_numvfs: 7
sriov_nic01_physical _network: physnet3

3.If you need to set different values for each compute node, specify them in
cluster.<name>.infra.config.

Example

openstack_compute _node02:
name: ${ param:openstack compute node02 hostname}

domain: ${ param:cluster domain}

classes:
- cluster.${ param:cluster name}.openstack.compute

params:

©2025, Mirantis Inc. Page 420

Mirantis Cloud Platform Deployment Guide

salt_master_host: ${ param:reclass_config_master}
linux_system_codename: xenial
sriov_nic01_device_name: ethl
sriov_nic01_numvfs: 7
sriov_nic01_physical_network: physnet3

4. If your hardware does not support interrupt remapping, set the following parameter:
sriov_unsafe_interrupts: True

5.If you need more than one NIC on a compute node, set the following parameters in
cluster.<NAME=>.openstack.compute.

Example

nova:
compute:
sriov:
sriov_nic01:
devname: ethl
physical_network: physnet3
sriov_nic02:
devname: eth2
physical_network: physnet4
sriov_nic03:
devname: eth3
physical_network: physnet5
sriov_nic04:
devname: eth4
physical_network: physnet6
linux:
system:
kernel:
sriov: True
unsafe_interrupts: False
sysfs:
sriov_numvfs:
class/net/ethl/device/sriov_numvfs: 7
class/net/eth2/device/sriov_numvfs: 15
class/net/eth3/device/sriov_numvfs: 15
class/net/eth4/device/sriov_numvfs: 7

6. Enable the kernel boot parameter for the OpenStack compute node:

linux:
system:

©2025, Mirantis Inc. Page 421

Mirantis Cloud Platform Deployment Guide

kernel:
boot_options:
- intel_iommu=on

7. Select from the following options:

* If you are performing the initial deployment of your environment, proceed with the
further environment configurations.

* If you are making changes to an existing environment:

1. Run the virt-host-validate command from an OpenStack compute node to ensure
that it is ready for SR-I0V.

2. Re-run the salt configuration on the Salt Master node:

salt "cmp*" state.sls linux,nova

3. Reboot the OpenStack compute nodes one by one as described in MCP Operations
Guide: Reboot a compute node.

©2025, Mirantis Inc. Page 422

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/manage-compute-nodes/reboot-compute-node.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/openstack-operations/manage-compute-nodes/reboot-compute-node.html

Mirantis Cloud Platform Deployment Guide

Configure SR-IOV with OpenContrail

Since OpenContrail does not use Neutron SR-IOV agents, it does not require any special changes
on the Neutron side. Port configuration can be done through the Neutron APIs or the
OpenContrail Ul.

©2025, Mirantis Inc. Page 423

Mirantis Cloud Platform Deployment Guide

Configure SR-IOV with OpenVSwitch

Neutron OVS requires enabling of the sriovnicswitch mechanism driver on the Neutron server
side and the neutron-sriov-nic-agent running on each compute node with this feature enabled.

To configure SR-IOV with OpenVSwitch:

1. Include the class to cluster.<NAME=>.openstack.compute:

- system.neutron.compute.nfv.sriov

Note
By default, the metadata model contains configuration for 1 NIC dedicated for SR-IOV.

2. Include the class to cluster.<NAME>.openstack.control:

- system.neutron.control.openvswitch.sriov

3.If you need more than 1 NIC, extend the previous configuration by extra Neutron
cluster.<NAME=>.openstack.compute.

Example

neutron:
compute:
backend:
sriov:
sriov_nic01:
devname: ethl
physical_network: physnet3
sriov_nic02:
devname: eth2
physical_network: physnet4
sriov_nic03:
devname: eth3
physical_network: physnet5
sriov_nic04:
devname: eth4
physical_network: physnet6

©2025, Mirantis Inc. Page 424

Mirantis Cloud Platform Deployment Guide

Create instances with SR-IOV ports
To enable the SR-IOV support, you must create virtual instances with SR-IOV ports.

To create virtual instances with SR-IOV ports:

1. Create a network and a subnet with a segmentation ID. For example:

neutron net-create --provider:physical_network=physnet3 \
--provider:segmentation_id=100 net04
neutron subnet-create net04 a.b.c.d/netmask

2. Request the ID of the Neutron network where you want the SR-IOV port to be created. For
example:

net_id="neutron net-show net04 | grep "\ id\ " | awk '{ print $4 }"

3. Create an SR-IQOV port with one of the available VNIC driver types that are direct, normal,
direct-physical, and macvtap:

port_id="neutron port-create $net_id --name sriov_port \
--binding:vnic_type direct | grep "\ id\ " | awk '{ print $4 }"

4. Create a virtual instance with the SR-IOV port created in step 3:

nova boot --flavor ml.large --image ubuntu_14.04 --nic port-id=$port_id test-sriov

Seealso
Using SR-I0V functionality in the official OpenStack documentation

Seealso
Enable Multiqueue

©2025, Mirantis Inc. Page 425

https://docs.openstack.org/mitaka/networking-guide/config-sriov.html

Mirantis Cloud Platform Deployment Guide

Enable Huge Pages

Huge Pages is a technology that supports 2MB and 1GB size memory pages. Huge Pages
reduces time to access data stored in the memory by using bigger memory pages, which leads
to fewer page entries to look up by CPU when choosing a page associated with a current
process. Use of Huge Pages is beneficial in operations and processes that require large amount
of memory.

Warning
Verify that CPU supports HugePages before you proceed.

©2025, Mirantis Inc. Page 426

Mirantis Cloud Platform Deployment Guide

Enable the Huge Pages support

This section exaplains how to configure the support for the Huge Pages feature in your MCP
depoyment.

To enable Huge Pages:

1. Log in to the host machine.

2. To verify that CPU supports Huge Pages, analyze the system response of the following
command:

cat /proc/cpuinfo

In the system output, search for the parameters:

* PSE - support of 2MB hugepages

* PDPE1GB - support of 1GB hugepages
3. Include the class in cluster.<name>.openstack.compute:

- system.nova.compute.nfv.hugepages

4. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

compute_hugepages_size: 1G # or 2M
compute_hugepages_count: 40
compute_hugepages_mount: /mnt/hugepages_1G # or /mnt/hugepages 2M

5. Select from the following options:

* If you are performing the initial deployment your environment, proceed with the further
environment configurations.

* If you are making changes to an existing environment, re-run the salt configuration on
the Salt Master node:

salt "cmp*" state.sls linux,nova

6. Reboot the affected servers.

7.1f you need to set different values for each compute node, define them in
cluster.<name=>.infra.config for each node.

Example:

openstack_compute_node02:
name: ${ param:openstack compute node02 hostname}
domain: ${_param:cluster domain}
classes:
- cluster.${ param:cluster_name}.openstack.compute

©2025, Mirantis Inc. Page 427

Mirantis Cloud Platform Deployment Guide

params:
salt_master_host: ${_param:reclass_config_master}
linux_system_codename: xenial
compute_hugepages _size: 1G # or 2M
compute_hugepages_count: 40
compute_hugepages_mount: /mnt/hugepages 1G # or /mnt/hugepages 2M

Seealso
Boot a virtual machine with Huge Pages

©2025, Mirantis Inc. Page 428

Mirantis Cloud Platform Deployment Guide

Boot a virtual machine with Huge Pages
This section explains how to boot a VM with Huge Pages.

To boot a virtual machine with Huge Pages:

1. Create a new flavor or use an existing one to use with Huge Pages. To create a new image
flavor:

. openrc admin admin
nova flavor-create huge 999 1024 4 1

2. Add the size of huge pages to the image flavor:

nova flavor-key huge set hw:mem_page size=2048

3. Verify the image flavor exists:

nova flavor-show huge

Example of system response

+ + +
| Property | Value |
+ + +

| OS-FLV-DISABLED:disabled | False |

| OS-FLV-EXT-DATA:ephemeral |0 |

| disk | 4 |

| extra_specs | {"hw:mem_page_size": "2048"} |
| id |7 |

| name | huge |

| os-flavor-access:is_public | True |

| ram | 1024 |

| rxtx_factor | 1.0 |

| swap |

| vepus | 1 |
+ +

4. Create a new image or use an existing image. You need an Ubuntu image and the default
Cirros image.

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
--location https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-diskl.img \
--disk-format gcow?2 --container-format bare

5. Boot a new instance using the created flavor:

©2025, Mirantis Inc. Page 429

Mirantis Cloud Platform Deployment Guide

nova boot --flavor huge --image ubuntu instl

6. Verify that the new VM uses 512 huge pages:

grep Huge /proc/meminfo

Example of system response

AnonHugePages: 1138688 kB
HugePages Total: 1024
HugePages Free: 512
HugePages Rsvd: 0
HugePages Surp: 0
Hugepagesize: 2048 kB

©2025, Mirantis Inc.

Page 430

Mirantis Cloud Platform Deployment Guide

Configure NUMA and CPU pinning architecture

NUMA and CPU pinning is a shared memory architecture that describes the placement of main
memory modules on processors in a multiprocessor system. You can leverage NUMA when you
have data strongly associated with certain tasks or users. In such case, CPU can use its local
memory module to access data reducing access time.

NUMA usage is beneficial on particular workloads, for example, on configurations where data is
often associated with certain tasks or users.

©2025, Mirantis Inc. Page 431

Mirantis Cloud Platform Deployment Guide

Enable NUMA and CPU pinning

Before you proceed with enabling DPDK in your deployment, the NUMA and CPU pinning
enablement is required.

To enable NUMA and CPU pinning:
1. Verify your NUMA nodes on the host operating system:

Iscpu | grep NUMA

Example of system response

NUMA node(s): 1
NUMA nodeO CPU(s): 0-11

2. Include the class to cluster.<NAME=>.openstack.compute:

- system.nova.compute.nfv.cpu_pinning

3. Set the parameters in cluster.<name>.openstack.init on all compute nodes:

* compute_kernel_isolcpu
Set of host CPUs to be isolated from system. Kernel will not assign internal
processes on this set of CPUs. This parameter is configured in grub

* nova_cpu_pinning
Subset of CPUs isolated on previous step. This parameter is used by Nova to run

VMs only on isolated CPUs with dedicated pinning. Nova vCPU pinning set is
configured in the nova.conf file after system isolates appropriate CPUs

Example

nova cpu_pinning: "1,2,3,4,5,7,8,9,10,11"
compute_kernel isolcpu: ${_param:nova_cpu_pinning}

4. Select from the following options:

* If you are performing the initial deployment, proceed with the further environment
configurations.

* If you are making changes to an existing environment, re-run the salt configuration on
the Salt Master node:

salt "cmp*" state.sls linux,nova

©2025, Mirantis Inc. Page 432

Mirantis Cloud Platform Deployment Guide

Note

To take effect, servers require a reboot.

5.1f you need to set different values for each compute node, define them in
cluster.<name>.infra.config.

Example

openstack_compute_node02:
name: ${ param:openstack compute node02 hostname}
domain: ${_param:cluster_ domain}
classes:
- cluster.${ param:cluster name}.openstack.compute
params:
salt master_host: ${ param:reclass_config_master}
linux_system_codename: xenial
nova cpu_pinning: "1,2,3,4,5,7,8,9,10,11"
compute kernel isolcpu: "1,2,3,4,5,7,8,9,10,11"

©2025, Mirantis Inc. Page 433

Mirantis Cloud Platform Deployment Guide

Boot a VM with two NUMA nodes
This example demonstrates booting a VM with two NUMA nodes.
To boot VM with two NUMA nodes:

1. Create a new flavor or use an existing one to use with NUMA. To create a new flavor, run:

. openrc admin admin
nova flavor-create ml.numa 999 1024 5 4

2. Add numa_nodes to the flavor.

Note
vCPUs and RAM will be divided equally between the NUMA nodes.

nova flavor-key ml.numa set hw:numa_nodes=2
nova flavor-show ml.numa

Example of system response:

+ + +
| Property | Value |
+ + +

| OS-FLV-DISABLED:disabled | False |
| OS-FLV-EXT-DATA:ephemeral | O |

| disk | 5 |

| extra_specs | {"hw:numa_nodes": "2"} |
| id | 999 |

| name | ml.numa |

| os-flavor-access:is_public | True |

| ram | 1024 |

| rxtx_factor | 1.0 |

| swap | I

| vepus | 4 |

+ + +

3. Create a new image or use an existing image.

Note

You need an Ubuntu image and the default Cirros image.

©2025, Mirantis Inc. Page 434

Mirantis Cloud Platform Deployment Guide

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
--location https://cloud-images.ubuntu.com/trusty/current/\
trusty-server-cloudimg-amd64-diskl.img \
--disk-format qcow?2 --container-format bare

4. To enable SSH connections:
1. Add a new rule to the security group:
nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new SSH key pair or use the existing key pair. To create a new ssh key pair:

ssh-keygen

3. Add the key pair to Nova:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp

5. Verify free memory before you boot the VM:

numact! -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 01
node 0 size: 3856 MB
node O free: 718 MB
node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 337 MB
node distances:
node 0 1

0: 10 20

1: 20 10

6. Boot a new instance using the created flavor:

nova boot --flavor ml.numa --image ubuntu --key-name my_kp instl

7. Verify if free memory has been changed after booting the VM:

©2025, Mirantis Inc. Page 435

Mirantis Cloud Platform Deployment Guide

numact! -H

Example of system response:

available: 2 nodes (0-1)
node O cpus: 0 1
node 0 size: 3856 MB

node 0 free: 293 MB # was 718 MB

node 1 cpus: 2 3
node 1 size: 3937 MB

node 1 free: 81 MB # was 337 MB

node distances:
node 0 1
0: 10 20
1: 20 10

8. Retrieve the instance’s IP:

nova show instl | awk '/network/ {print $5}"

Example of system response:
10.0.0.2
9. Connect to the VM using SSH:
ssh ubuntu@10.0.0.2
10 Install numactl:
sudo apt-get install numactl
11 Verify the NUMA topology on the VM:

numact! -H

Example of system response:

available: 2 nodes (0-1)
node O cpus: 0 1

node O size: 489 MB
node O free: 393 MB
node 1 cpus: 2 3

node 1 size: 503 MB

©2025, Mirantis Inc.

Page 436

Mirantis Cloud Platform Deployment Guide

node 1 free: 323 MB
node distances:
node 0 1

0: 10 20

1: 20 10

©2025, Mirantis Inc.

Page 437

Mirantis Cloud Platform Deployment Guide

Boot a VM with CPU and memory pinning
This example demonstrates booting VM with CPU and memory pinning.

To boot VM with CPU and memory pining:

1. Create a new flavor with specific division of vCPUs and RAM between the NUMA nodes:

. openrc admin admin
nova flavor-create ml.numa_2 9992 1024 5 4

2. Add numa_nodes and other specific options to the flavor:
nova flavor-key ml.numa_2 set hw:numa_nodes=2 hw:numa_cpus.0=0,2 \

hw:numa_cpus.1=1,3 hw:numa_mem.0=324 hw:numa_mem.1=700
nova flavor-show ml.numa_2 | grep extra

Example of system response:

| extra_specs | {"hw:numa_cpus.0": "0,2", "hw:numa_cpus.1": "1,3",\
"hw:numa_nodes": "2", "hw:numa_mem.1": "700", "hw:numa_mem.0": "324"} |

3. Create a new image or use an existing image.

Note
You need an Ubuntu image or the default Cirros image.

To create a new Ubuntu image:

glance --os-image-api-version 1 image-create --name ubuntu \
--location https://cloud-images.ubuntu.com/trusty/current/\
trusty-server-cloudimg-amd64-diskl.img \
--disk-format gcow?2 --container-format bare

4. To enable SSH connections:

1. Add a new rule to the security group:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

2. Create a new SSH key pair or use the existing key pair. To create a new ssh key pair,
run:

ssh-keygen

©2025, Mirantis Inc. Page 438

Mirantis Cloud Platform Deployment Guide

3. Add the key pair to Nova:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub my_kp
5. Boot a new instance using the created flavor:
nova boot --flavor ml.numa_2 --image ubuntu --key-name my_kp inst2

6. Verify if free memory has been changed after booting the VM:

numact! -H

Example of system response:

available: 2 nodes (0-1)
node O cpus: 0 1
node O size: 3856 MB
node O free: 293 MB # was 718 MB
node 1 cpus: 2 3
node 1 size: 3937 MB
node 1 free: 81 MB # was 337 MB
node distances:
node 0 1
0: 10 20
1: 20 10

7. Retrieve the instance’s IP:

nova show inst2 | awk '/network/ {print $5}"

Example of system response:

10.0.0.3

8. Connect to the VM using SSH:

ssh ubuntu@10.0.0.3

9. Install numactl:

sudo apt-get install numactl

10 Verify the NUMA topology on the VM:

©2025, Mirantis Inc. Page 439

Mirantis Cloud Platform Deployment Guide

numactl -H

Example of system response:

available: 2 nodes (0-1)
node 0 cpus: 0 2
node 0 size: 303 MB
node O free: 92 MB
node 1 cpus: 1 3
node 1 size: 689 MB
node 1 free: 629 MB
node distances:
node 0 1

0: 10 20

1: 20 10

You can see that the NUMA topology has two NUMA nodes. Total RAM size is about 1GB:

¢ node-0 CPUs are 0 and 2
* node-1 CPUs are 1 and 3, node-1 RAM is about 324 MB

* node-2 RAM is about 700 as specified in the m1.numa_2 flavor

©2025, Mirantis Inc. Page 440

Mirantis Cloud Platform Deployment Guide

Enable Multiqueue

The MCP Multiqueue enables the scaling of packet sending/receiving processing to the number

of available vCPUs of a guest by using multiple queues. The feature includes:

* Multiqueue for DPDK-based vrouters

Is supported by OpenVSwitch only. Underlay configuration for OVS is a part of DPDK

interfaces and is defined by the n_rxq parameter. For example:

:..system.neutron.compute.nfv.dpdk

parameters:
linux:
network:
interfaces:

other interface setup

dpdko:

name: ${ param:dpdk0_name}
pci: ${_param:dpdk0_pci}
driver: igb_uio

bond: dpdkbondl

enabled: true

type: dpdk _ovs_port

n_rxq: 2

dpdk1:

name: ${ param:dpdkl _name}
pci: ${_param:dpdkl_pci}
driver: igb_uio

bond: dpdkbondl

enabled: true

type: dpdk _ovs_port

n_rxq: 2

* Multiqueue Virtio
Is supported by OpenContrail and OVS

©2025, Mirantis Inc.

Page 441

Mirantis Cloud Platform Deployment Guide

Provision a VM with Multiqueue

To provision a VM with Multiqueue:

1. Set the image metadata property with the Multiqueue enabled:

nova image-meta <IMAGE_NAME> set hw_vif multiueue_enabled="true"

2. After the VM is spawned, use the following command on the virtio interface in the guest to
enable multiple queues inside the VM:

ethtool -L <INTERFACE_NAME=> combined <#queues>

©2025, Mirantis Inc. Page 442

Mirantis Cloud Platform Deployment Guide

Configure load balancing with OpenStack Octavia

You can use the OpenStack Octavia service to provide advanced load balancing in your
OpenStack environment. For the Octavia architecture details and limitations, see: MCP
Reference Architecture: Plan load balancing with OpenStack Octavia.

You can enable Octavia before or after you have an operational OpenStack environment with
Neutron OVS as a networking solution deployed by MCP.

©2025, Mirantis Inc. Page 443

https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/network/octavia-plan.html
https://docs.mirantis.com/mcp/q4-18/mcp-ref-arch/openstack-environment-plan/network/octavia-plan.html

Mirantis Cloud Platform Deployment Guide

Enable Octavia on a new OpenStack environment

You can enable Octavia before deploying an OpenStack-based MCP cluster and automatically
deploy it together with other OpenStack components using the dedicated Jenkins pipeline.

To enable Octavia on a new OpenStack environment:

1. While generating a deployment metadata model for your new OpenStack-based MCP cluster
as described in Create a deployment metadata model, select the following parameters in
the Model Designer web Ul:

¢ OVS as a networking engine in the Infrastructure parameters section
* Openstack octavia enabled in the Product parameters section

* For MCP versions starting from the 2019.2.8 maintenance update:

* To use the amphora HA mode, set Octavia amphora topology to ACTIVE_STANDBY

* To use a spare amphorae pool for the Octavia load balancer, set the required pool
size in Octavia spare amphora pool size

e If you need TLS support with Barbican, select Barbican enabled in the Product
parameters section

o TECHNICAL PREVIEW ¢ you want to enable Octavia Cluster Manager, select Octavia Cluster
Manager in the Product parameters section

2. Proceed with further cluster configuration as required. Octavia will be deployed during your
OpenStack environment deployment by the dedicated Jenkins pipeline. For the deployment
details, see: Deploy an OpenStack environment.

Seealso

Example of a load balancing topology

©2025, Mirantis Inc. Page 444

Mirantis Cloud Platform Deployment Guide

Enable Octavia on an existing OpenStack environment

You can enable Octavia on an operational OpenStack environment with Neutron OVS as a
networking solution deployed by MCP.

To enable Octavia on an existing OpenStack environment:
1. Log in to the Salt Master node.

2. Add the following class to cluster/<cluster name>/openstack/database.yml:

- system.galera.server.database.octavia

3. Add the following classes to cluster/<cluster_name=>/openstack/control/init.yml:

- system.keystone.client.service.octavia
- system.glance.client.image.octavia

- system.nova.client.service.octavia

- system.octavia.client

4. Select from the following options:

*To run Octavia worker services in a cluster, add the following class to
cluster/<cluster_name>/openstack/control/init.yml:

- system.neutron.client.service.octavia

*To run a single instance of Octavia worker services, add the following class to
cluster/<cluster_name=>/openstack/control/init.yml:

- system.neutron.client.service.octavia.single

5.1If Barbican support is required, add the following classes to
cluster/<cluster_name>/openstack/control/init.yml:

- system.barbican.client.v1l.octavia
- system.barbican.client.v1l.signed_images.octavia
- system.salt.minion.cert.octavia.image_sign

Caution!

If signing of images is disabled for Nova, do not add the images-related classes.

6. Add the following classes to cluster/<cluster name>/openstack/control.yml:

©2025, Mirantis Inc. Page 445

Mirantis Cloud Platform Deployment Guide

- system.neutron.control.openvswitch.octavia
- system.octavia.api.cluster

Note

Starting the OpenStack Queens release, the
system.neutron.control.openvswitch.octavia class is not required.

The system.octavia.api.cluster class configures an Octavia APl cluster to run on the
OpenStack controller nodes. Alternatively, if you want to run a single instance of Octavia
API, add the following class instead:

- system.octavia.api.single
7.In cluster/<cluster name>/infra/config.yml, configure the Octavia Manager services

(Controller Worker, Health Manager, and Housekeeping) to run on one of the gateway nodes
that is gtw01 by default:

* Add the following classes:

- system.salt.minion.ca.octavia_amphora_ca
- system.salt.minion.cert.octavia.amphora_cluster_client

* If you run the OpenStack gateway services in a cluster, add the following class:

- system.reclass.storage.system.openstack_gateway single_octavia

before

- system.reclass.storage.system.openstack_gateway cluster

* If you run the OpenStack gateway services in a single mode, add the following class:

- system.reclass.storage.system.openstack_gateway single_octavia

before

- system.reclass.storage.system.openstack_gateway single

o TECHNICAL PREVIEW ¢ you want to add Octavia Cluster Manager, also add the following
class:

©2025, Mirantis Inc. Page 446

Mirantis Cloud Platform Deployment Guide

- system.reclass.storage.system.openstack gateway_cluster octavia
8. Verify the classes and parameters:

1. Verify that the cluster/<cluster_name>/openstack/octavia_manager.yml file exists and
contains import of the following classes as well as a private key that will be used to log
in to amphorae. For example:

classes:

- system.octavia.manager.single

- system.salt.minion.ca.octavia_ca

- system.salt.minion.cert.octavia.amphora_client

parameters:

_param:
cluster_local_address: ${ param:single_address}
octavia_private_key: |

----- BEGIN RSA PRIVATE KEY-----
MIEpAIBAAKCAQEALjnPDJsQToHBtoqlo15mdSYpfi8z6 DFMi8GboOKCN330Un5u
OctbdtjUfeuhviepx1SCnvyWi09Ft8eWwq+KwLCGKbUxLvgKItu) 7K3LIrGXkt+m
qZN409XKeVKfZH+mQWkkxRWgX2r8RKNV3GkdNtd74VjhP+R6XSKJQ1Z8b7eHM10v
61jTY/jPczjK+eyCeEj4gbSnV8eKIqLhhquuSQRmMUO2DRSjLVdpdf2BB4/BdWFsD
YOMX7mb8kpErovQ+clJKMXDwD6ehzyU8SKE+1kVm5zOeEy4HdYIMpvUfN49P1anRV
2I1SQ1ZE+r221AMKIOtekrGHOe/1NP1DF5rINMwIDAQABAOIBAQCKP/cgpaRNHyg8
ISKIHs67SWqdEm73G3ijgB+)SKmW2w7dzJgN//6xYUANP/zIuM7PnJOgMQyBBTMS
NBTVv5spqZLKJZYivj6Tb1lYa8jupKmOjEWIMfBo2ZYVrfgFmrfGOfEebSvmuPlh9M
vuzlftmWVSSUOkjODmMM9D6QpzgrbpktBuA/WpX+6esMTw]pOcQ5xZWEnNHXnVzuTc
SncodVweE4gz6F1qorbqljzZBUAUQ5T00ZTdHzIS1IbamACHWaxQfixAO2s4+BoUK
ANGGZWkfneCxx7IthvY8DiKn7M5cSRnqFyDToGqgalLezdkMNIGC7v3U11FF5bISEW
fLlo/HWBA0GBAOavhTr8eqezTchgZvarorFlq7HFWk/IOvgulotu6/wlh1V/KdF+
aLLHgPg)5j+RrCMvTBoKgMeeHfVGrS2udEy8L1mK6b3meG+tMxUO50A55abmhYn7
7vF0g8X)mYIHIXmuCgF90R8PiscbOeaMImHW9OunKTKo8EOs5j+D8+AMJAoGBAMo4
8WW+D3XiD7fsymsfXalf7VpAt/H834QTbNZJweUWhgllelLutyahyyfjjHV200nNZ
cnUO9DWKpBbLg7d1pyT69CNLXpNnxuWCt80iUjhWCUpNgqVmM2nDJbUdIRFTzYb2fS
ZC4r00QaPD5kMLSipjcwzMWeO0PniySXNvKXKINFbAoGBAKxW2gD7uKKKuQSOQUft
aAksMmMEIAHWKTDdvOA2VG6XvX5DHBLXmy08s7rPfqW06ZjCPCDqg4Velzvgvc9koX
d/IP6cvqlL9za+x6p5wjPQ4rEt/CfmdcmOE4eY+1EgLrUt314LHG)jG3ScWAIIrE
QyDrGOIGaYoQf89L3KqIMrO0JAoGARYAkIw8nSSCUvmXHe+GfOyKA9M/haG28dCwo
780RsqZ3FBEXmYkK1EYVCFqQX56jj25MWX2n/tJcdpifz8Q2ikHcfiTHSI187YI134
IKQPFgWbO8m1INnwoWrY//yx63BqWz1lvjymgNQ5GwutC8X]Ji5/6Xp+tGGiRUEg)GH
EIPUKpkCgYAjBIVMkpNILCREZ6b+qjrPV96ed3iTUt7TqP7yGIFI/OKkORFS38xqC
hBP6Fk8iINWuOWQD+ohM/vMMnvIhk5jwlcwn+kFOra04gi5KBFWSh/ddWMJxUtPC1
2htvlEc6zQAR6QfgXHMwhg1hP81jcpqpicQzCMhkzLoR1DC6stXdLg==
————— END RSA PRIVATE KEY-----

The private key is saved to /etc/octavia/.ssh/octavia_ssh_key on the Octavia manager
node.

©2025, Mirantis Inc. Page 447

Mirantis Cloud Platform Deployment Guide

Note

To generate an SSH key pair, run:

ssh-keygen -b 2048 -t rsa -N "" -f ~/.ssh/octavia_ssh_key

2.To use a spare amphorae pool for the Octavia load balancer, specify the
spare_amphora_pool_size parameter as required.

octavia:
manager:
house_keeping:
spare_amphora_pool_size: 0

9. Verify that the following Octavia parameters are configured in
cluster/<cluster_name=>/openstack/init.yml. For example:

parameters:
_param:

octavia_version: ${ param:openstack version}

octavia_service_host: ${ param:openstack control address}

mysql_octavia_password: <db_password>

keystone_octavia_password: <keystone password>

amp_flavor_id: <amphora-flavor-id>

octavia_health_manager_nodeO1l_address: 192.168.0.10

If clusterization enaled:

octavia_health_manager node02_address: 192.168.0.11

octavia_health_manager node03 address: 192.168.0.12

octavia_loadbalancer_topology: "SINGLE"

octavia_public_key: |
ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQC20c8MmxBOgcG2ioijXmZ1)
il+LzPoMUyLwZujQol3fc55fm45y1t22NR966G8jgnHVIKe/JaLTOW3x5bCr4
rAslYptTEu+oqW24nsrcsisZeS36apk3g71cp5Up9kf6ZBaSTFFaBfavxEolX
caR0213vhWOE/5HpdlolDVnxvt4czXS/0iNNj+M9zOMr571J4SPiptKdXx4qW
ouGGQq65)BGZQ7YNFKMtV2I11/YEHj8F1YWWNg6ZfuZvySkSv29D5zUkoxcPAPp
6HPJTYyQT7WRWbnM54TLgd1ggym9R83j0/VqdFXYh)DVkT6vbYgAwgXS16SsYf
R7/U0/UMXmsg0z root@cfg01

Note

©2025, Mirantis Inc. Page 448

Mirantis Cloud Platform Deployment Guide

* The parameter octavia_public_key should contain a public key generated in the
previous step. In our example, it is taken from ~/.ssh/octavia_ssh_key.pub.

*To use the amphora HA mode, set octavia loadbalancer topology to
ACTIVE_STANDBY. By default, octavia_loadbalancer_topology is set to SINGLE to
use the default load balancer topology.

10 Optional. Override the default Octavia parameters in
. cluster/<cluster_name>/openstack/octavia_manager.yml. The default parameters are as
follows:

parameters:
octavia:
manager:

certificates:
ca_private_key: '/etc/octavia/certs/private/cakey.pem'
ca_certificate: '/etc/octavia/certs/ca_01l.pem'

controller_worker:
amp flavor _id: ${ param:amp_flavor_id}
amp_image_tag: amphora
amp_ssh_key name: octavia_ssh_key
loadbalancer_topology: 'SINGLE'

haproxy amphora:
client_cert: '/etc/octavia/certs/client.pem’
client_cert_key: '/etc/octavia/certs/client.key'
client_cert_all: '/etc/octavia/certs/client_all.pem’
server_ca: '/etc/octavia/certs/ca_01.pem'

health_manager:
bind_ip: ${ param:octavia_hm _bind_ip}
heartbeat_key: 'insecure’

house_keeping:
spare_amphora_pool_size: 0

Note

Starting from MCP 2019.2.7 maintenance update, haproxy amphora includes the
build_rate_limit parameter, set to 2 by default. Use the parameter to configure the
build rate limit for the Octavia manager.

11 Add the configured Octavia roles to the corresponding nodes:

salt-call state.sls reclass.storage

©2025, Mirantis Inc. Page 449

Mirantis Cloud Platform Deployment Guide

12 Refresh pillars:
| salt "*' saltutil.refresh_pillar
13 Update the Salt Minion configuration:
| salt-call state.sls salt.minion.service
14 Create the Octavia database:

salt -C 'l@galera:master' state.sls galera
salt -C 'l@galera:slave' state.sls galera -b 1

15 Configure HAProxy for Octavia API:
| salt -C 'l@haproxy:proxy' state.sls haproxy
16 Configure NGINX proxy for Octavia API:
| salt -C 'l@nginx:server' state.sls nginx
17 Create an Octavia user and endpoints in Keystone:
salt -C 'l@keystone:client' state.sls keystone.client
18 Upload an amphora image to Glance:
salt -C 'l@glance:client’ state.sls glance.client
19 Create an amphora flavor and a key pair in Nova:
salt -C 'l@nova:client' state.sls nova.client
This state expects you to provide an SSH key that is used to create a key pair.
20 Create the Neutron resources for Octavia:

salt -C 'l@neutron:client' state.sls neutron.client

This state creates security groups and rules for amphora instances and Health Manager, a
management network with a subnet for Octavia, and a port for Health Manager.

21 If Barbican and signing of the images for Nova are enabled, apply the following states to
. create a certificate and sign the Octavia amphora image:

©2025, Mirantis Inc. Page 450

Mirantis Cloud Platform Deployment Guide

salt -C 'l@barbican:client' state.sls salt.minion.cert
salt -C 'l@barbican:client' state.sls barbican.client

22 Update the Salt mine:

salt "*' mine.update

23 Deploy the Octavia services:

salt -C 'l@octavia:api and *01*' state.sls octavia
salt -C 'l@octavia:api' state.sls octavia
salt -C 'l@octavia:manager' state.sls octavia

24 Generate certificates for the Octavia controller-amphora communication:

salt-call state.sls salt.minion.ca
salt-call state.sls salt.minion.cert

Note

You may need to apply the above states twice before they succeed.

If you added Octavia Cluster Manager in previous steps, also apply the following states:

salt-call state.sls salt.minion.ca
salt-call state.sls salt.minion.cert

25 Set up the Octavia client:

salt -C 'l@octavia:client' state.sls octavia.client

Seealso

Example of a load balancing topology

©2025, Mirantis Inc. Page 451

Mirantis Cloud Platform Deployment Guide

Example of a load balancing topology

After you enable Octavia on your new or existing OpenStack environment as described in
Configure load balancing with OpenStack Octavia, create a topology for your use case. Each
topology requires you to configure the load balancer, port listener, LBaaS pool, and, optionally,
the Health Monitor with a specific set of parameters.

For the purpose of this example, a topology for balancing traffic between two HTTP servers
listening on port 80 is used. The topology includes the following parameters:

* Backend servers 10.10.10.7 and 10.10.10.29 in the private-subnet subnet run an HTTP
application that listens on the TCP port 80.

* The public-subnet subnet is a shared external subnet created by the cloud operator which is
accessible from the Internet.

* You must create a load balancer accessible by an IP address from public-subnet that will be
responsible for distributing web requests between the backend servers.

For more examples, see: OpenStack Octavia documentation

Caution!

Starting the OpenStack Queens release, use only the OpenStack Octavia client. For
details, see OpenStack Queens documentation.

Workflow:

1. Log in to a controller node.

2. Create a load balancer:
neutron Ibaas-loadbalancer-create --name Ib1 private-subnet
3. Create an HTTP listener:

neutron lbaas-listener-create --name listenerl --loadbalancer \
Ibl --protocol HTTP --protocol-port 80

4. Create a LBaaS pool that will be used as default for listenerl:

neutron Ibaas-pool-create --name pooll --Ib-algorithm \
ROUND_ROBIN --listener listenerl --protocol HTTP

5. Create a health monitor that ensures health of the pool members:

neutron Ibaas-healthmonitor-create --delay 5 --name hm1 --timeout \
3 --max-retries 4 --type HTTP --pool pooll

©2025, Mirantis Inc. Page 452

https://docs.openstack.org/developer/octavia/index.html#for-users
https://docs.openstack.org/octavia/queens/user/guides/basic-cookbook.html

Mirantis Cloud Platform Deployment Guide

6. Add backend servers 10.10.10.7 and 10.10.10.29 to the pool:

neutron Ibaas-member-create --subnet private-subnet --address \
10.10.10.7 --protocol-port 80 --name memberl pooll

neutron Ibaas-member-create --subnet private-subnet --address \
10.10.10.29 --protocol-port 80 --name member2 pooll

7. Create a floating IP address in a public network and associate it with a port of the load
balancer VIP:

vip_port_id=$(neutron Ibaas-loadbalancer-show Ib1l -c vip_port_id -f\
value)

fip_id=%$(neutron floatingip-create admin_floating_net -c id -f value)
neutron floatingip-associate $fip_id $vip_port_id

8. Access the VIP floating IP address and verify that requests are distributed between the two
servers.

Example:

$ curl http://172.24.4.14:80
Welcome to addr:10.10.10.7

$ curl http://172.24.4.14:80
Welcome to addr:10.10.10.29

In the example above, an HTTP application that runs on the backend servers returns an IP
address of the host on which it runs.

©2025, Mirantis Inc. Page 453

Mirantis Cloud Platform Deployment Guide

Example of a load balancing topology with TLS support

This section describes an example of the Nova instances working as simple HTTP web servers
that return Hello, world from instance_name! as a response to requests. The example describes
how to create a TLS-terminated HTTPS load balancer that is accessible from the Internet with a
certificate stored in Barbican. This load balancer will distribute requests to the backend servers
over the non-encrypted HTTP protocol.

Caution!

The load balancer certificate must be uploaded to Barbican under the octavia user, so that
it can be used later during a listener creation. Therefore, make sure that a user that will
create the load balancing topology has access to the Octavia service project (tenant).

Workflow:

1. Log in to any OpenStack controller node.

2. Create a load balancer with a VIP in the public subnet:

openstack loadbalancer create --name Ib1 --vip-subnet-id public-subnet

3. Verify the load balancer VIP address:

openstack loadbalancer list

Example of system response extract:

o +---mm- tommmmmeeen oo o oo +

| id | name | project id | vip_address | provisioning_status | provider |
o +---mm- tommmmmeeen oo o oo +

| 959b0946-75ba...| Ib1l | 070bc4ddda...| 10.0.0.17 | ACTIVE | octavia |
o +---mm- tommmmmeeen oo o oo +

4. Combine the individual certificate, key, and intermediate certificate to a single PKCS12 file.
For example:

openssl pkcsl2 -export -in certificatel.crt -inkey privatekey.key -out \
testl.pl2 -passout pass:

©2025, Mirantis Inc. Page 454

Mirantis Cloud Platform Deployment Guide

Note
Use the load balancer VIP address as a FQDN during the certificate generation.

5. In the Octavia service tenant, create a secret in Barbican from the Octavia user:

openstack secret store --name='tls_secretl' -t 'application/octet-stream' \
-e 'baseb4' --payload="$(baseb4 < testl.pl2)"

6. Add acl for the created secret:

secret_id=$(openstack secret list | awk '/ tls_secretl / {print $2}")
openstack acl user add -u $(openstack user show octavia -c id -f value) $secret _id

7. Create a listener that uses the TERMINATED HTTPS protocol and set the secret
created in the step 5:

that was

--name listenerl --default-tls-container=$secret id Ibl

openstack loadbalancer listener create --protocol-port 443 --protocol TERMINATED HTTPS \

8. Create a pool that will be used by listenerl:

openstack loadbalancer pool create --name pooll --Ib-algorithm ROUND_ROBIN \
--listener listenerl --protocol HTTP

9. Add members to the created pool with addresses 10.0.0.25 and 10.0.0.20:

openstack loadbalancer member create --subnet-id public-subnet \
--address 10.0.0.25 --protocol-port 80 pooll

openstack loadbalancer member create --subnet-id public-subnet \
--address 10.0.0.20 --protocol-port 80 pooll

10 Obtain the load balancer VIP:

openstack loadbalancer show Ibl -c vip_address -f value

11 Using the load balancer VIP floating IP address, verify that requests are distributed
. the two servers:

between

©2025, Mirantis Inc.

Page 455

Mirantis Cloud Platform Deployment Guide

curl --cacert certificatel.crt https://10.0.0.17
Hello, world from VM1!
curl --cacert certificatel.crt https://10.0.0.17
Hello, world from VM2!

Note

Make sure that the security group allows traffic on port 443.

©2025, Mirantis Inc. Page 456

Mirantis Cloud Platform Deployment Guide

Move the Octavia certificates from the gtwO1 to the Salt Master node

Starting from the Q418 MCP release, the certificates for connection to amphora are created on
the Salt Master node and then loaded on the gtw nodes. Previously, they were created and
stored on the gtw01l node. Therefore, if you have an existing OpenStack environment with
Octavia where certificates were initially created on the gtw01l node, you can move these
certificates to the Salt Master node to update your previously created load balancers.

To move certificates from the gtw01 to the Salt Master node:

1. Log in to the Salt Master node.
2. In /etc/salt/master.d/master.conf, verify that the file_recv parameter is set to True.

3. Update the Octavia Salt formula:

apt install --upgrade salt-formula-octavia

4. Update the Reclass model:

1. Remove the following classes from
cluster/<cluster_name>/openstack/octavia_manager.yml:

- system.salt.minion.ca.octavia ca
- system.salt.minion.cert.octavia.amphora_client

2. Add the following classes to cluster/<cluster_name=>/infra/config.yml:

- system.salt.minion.ca.octavia_amphora_ca
- system.salt.minion.cert.octavia.amphora_cluster_client

3, TECHNICAL PREVIEW ¢ you want to add the Octavia Cluster Manager to your OpenStack
environment, change the following class

- system.reclass.storage.system.openstack gateway_single octavia

to

- system.reclass.storage.system.openstack _gateway cluster octavia

5. Load the certificates from the gtw01 to the Salt Master node:

salt 'gtw01*' cp.push_dir /etc/octavia/certs upload _path=octavia certs

salt 'gtwO1*' cp.push_dir /etc/pki/ca/octavia_ca upload_path=octavia_certs

mkdir -p /srv/salt/env/prd/ certs

cp -R /var/cache/salt/master/minions/gtw01l.<cluster name>/files/octavia certs/*\

/srv/salt/env/prd/ _certs/octavia

©2025, Mirantis Inc. Page 457

Mirantis Cloud Platform Deployment Guide

6. Refresh the pillars:

salt-call state.sls reclass.storage
salt *' saltutil.refresh_pillar
salt "*' saltutil.sync_all

7. TECHNICAL PREVIEW ¢ you are going to use the Octavia Cluster Manager:

1. Rename the existing port on the gtw01 node:

salt -C 'l@neutron:client' state.sls octavia. rename_hm_neutron_port

2. Update monitor ports:

salt -C 'l@neutron:client' state.sls neutron.client
salt *' mine.update

8. Apply the changes:

salt -C 'l@octavia:manager' state.sls octavia

Seealso

OpenStack Octavia developer documentation

©2025, Mirantis Inc. Page 458

https://docs.openstack.org/developer/octavia/index.html

Mirantis Cloud Platform Deployment Guide

Configure LDAP integration with MCP

This section describes how to integrate your LDAP server with Keystone and a host operating
system in MCP. This configuration is not enabled by default and, therefore, requires manual
modifications in your cluster model.

©2025, Mirantis Inc. Page 459

Mirantis Cloud Platform Deployment Guide

Configure LDAP with Keystone server

To configure LDAP integration with Keystone server in MCP, you must create a separate file for
this definition in your cluster model. In this section, the Idap.yml file is used as an example. You
must also set up the rights mapping for users and groups. If required, you can also specify
filtering.

To configure LDAP with Keystone server:

1. In your Git project repository, open the cluster/<cluster name>/openstack/ directory of your
cluster model.

2. In this directory, create the Idap.yml file.
3. Create a configuration for the LDAP integration in the Idap.yml file.

Example:

parameters:
keystone:
server:
service_name: apache2
domain:
example.com:
description: ""
backend: Idap
identity:
driver: Idap
assignment:
backend: sql
Idap:
url: Idap://<LDAP ADDRESS>
bind_user: CN=<UserName>,0U=<0U-name>,DC=<DomainName>,DC=<DomainExtension>
query_scope: sub
page_size: 1000
password: <LDAP PASSWORD>
suffix: DC=<DomainName>,DC=<DomainExtension>
user_tree_dn: DC=<DomainName>,DC=<DomainExtension>
group_tree_dn: DC=<DomainName>,DC=<DomainExtension>
user_objectclass: person
user_id_attribute: sAMAccountName
user_name_attribute: sAMAccountName
user_pass_attribute: userPassword
user_enabled_attribute: userAccountControl
user_mail_attribute: mail
group_objectclass: ""
group_id_attribute: sAMAccountName
group_name_attribute: cn
group_member_attribute: member
group_desc_attribute: cn
filter:
user: "(&(&(objectClass=person)(uidNumber=*))(unixHomeDirectory=%*))"
group: ""

4. Optional. Configure the TLS encryption on LDAP traffic as follows:

©2025, Mirantis Inc. Page 460

Mirantis Cloud Platform Deployment Guide

parameters:
keystone:
domain:
example.com:
Idap:
url: Idaps://<LDAP ADDRESS>
tls:
enabled: True
req_cert: demand]allow|never
cacert: |
----BEGIN CERTIFICATE----

----END CERTIFICATE----

Note

The req_cert configuration key specifies the client certificate checks to be performed
on incoming TLS sessions from the LDAP server. The possible values for req_cert
include:

e demand

The LDAP server always receives certificate requests. If no certificate is
provided or the provided certificate cannot be verified against the existing
certificate authorities file, the session terminates.

* allow

The LDAP server always receives certificate requests. If no certificate is
provided or the provided certificate cannot be verified against the existing
certificate authorities file, the session proceeds as normal.

* never
A certificate is never requested.

For details, see the Integrate Identity with LDAP section in the upstream Keystone
Administrator Guide.

5. In cluster/<cluster_ name>/openstack/control.yml, include the previously created class to
the bottom of the classes section:

classes:

cluster.<cluster name>.openstack.ldap
cluster.<cluster name>
parameters:

©2025, Mirantis Inc. Page 461

https://docs.openstack.org/keystone/rocky/admin/identity-integrate-with-ldap.html#secure-the-openstack-identity-service-connection-to-an-ldap-back-end

Mirantis Cloud Platform Deployment Guide

6. Add parameters for Horizon to cluster/<cluster name>/openstack/proxy.yml:

parameters:
horizon:
server:
multidomain: true

7. Enforce the Keystone update:

salt -C 'l@keystone:server' state.sls keystone -b 1
salt -C 'l@horizon:server' state.sls horizon

8. Verify the LDAP integration:

source /root/keystonercv3
openstack user list --domain <your_domain>

9. Grant the admin role to a specific user:

1. Obtain the user ID:

openstack user list --domain <your_domain> | grep <user_name>
| <user_id> | <user_name> |

2. Set the admin role:

openstack role add --user <user_id> admin --domain <your_domain>

©2025, Mirantis Inc.

Page 462

Mirantis Cloud Platform Deployment Guide

Configure LDAP with host OS

To configure the pluggable authentication module (PAM) on a host operating system to support
LDAP authentication in MCP, you must create a separate file for this definition in your cluster
model and add it to all the nodes where you want to enable this authentication method.

In this section, the Idap.yml file is used as an example.

To enable PAM authentication:

1. Open the Git project repository with your cluster model.
2. Create the cluster/<cluster_name>/infra/auth/Idap.yml file.
3. Create a configuration for your LDAP server in this file.

Example:

parameters:
linux:
system:
auth:
enabled: true
Idap:
enabled: true
binddn: CN=<UserName>,0OU=<0U-name>,DC=<DomainName>,DC=<DomainExtension>
bindpw: <Password>
uri: Idap://<LDAP URL>
base: DC=<DomainName>,DC=<DomainExtension>
Idap_version: 3
pagesize: 1000
referrals: "off"
##You can also setup grouping, mapping, and filtering using these parameters.
filter:
passwd: (&(&(objectClass=person)(uidNumber=*))(unixHomeDirectory=*))
shadow: (&(&(objectClass=person)(uidNumber=*))(unixHomeDirectory=*))
group: (&(objectClass=group)(gidNumber=%*))
map:
passwd:
uid: sAMAccountName
homeDirectory: unixHomeDirectory
gecos: displayName
loginShell: ""/bin/bash"
shadow:
uid: sAMAccountName
shadowlLastChange: pwdLastSet

4. In cluster/<cluster_name>/openstack/cluster.yml, include the previously created class to
the bottom of the classes section:

classes:

cluster.<cluster_name>.infra.auth.ldap
cluster.<cluster_name>

©2025, Mirantis Inc. Page 463

Mirantis Cloud Platform Deployment Guide

parameters:

5. Enforce the linux.system update:

salt '<target node>*' state.sls linux.system

Seealso
MCP Operations Guide: Disable LDAP authentication on host OS

Tune the RabbitMQ performance in the OpenStack with
OVS deployments

Proper configuration of Nova and Neutron services in your Reclass deployment model allows for
decreasing the load on the RabbitMQ service making the service more stable under high load in
the deployments with 1000+ nodes.

To tune the RabbitMQ performance on a new MCP OpenStack deployment:

1. Generate a deployment metadata model for your new MCP OpenStack as described in
Create a deployment metadata model using the Model Designer Ul.

2. Open the cluster level of your Git project repository.

3. In openstack/gateway.yml, define the following parameters as required. For example:

neutron:
gateway:
dhcp_lease_duration: 86400
message_queue:
rpc_conn_pool_size: 300
rpc_thread_pool_size: 2048
rpc_response_timeout: 3600

4. In openstack/compute/init.yml, define the following parameters as required. For example:

neutron:
compute:
message_queue:
rpc_conn_pool_size: 300
rpc_thread_pool_size: 2048
rpc_response_timeout: 3600

5. In openstack/control.yml, define the following parameters as required. For example:

©2025, Mirantis Inc. Page 464

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/drive-train-operations/disable-ldap.html

Mirantis Cloud Platform Deployment Guide

nova:
controller:

timeout_nbd: 60

heal_instance_info_cache_interval: 600

block_device creation_timeout: 60

vif_plugging_timeout: 600

message_queue:
rpc_poll_timeout: 60
connection_retry_interval_max: 60
default_reply_timeout: 60
default_send_timeout: 60
default_notify_timeout: 60

6. In openstack/compute/init.yml, define the following parameters as required. For example:

nova:
compute:

timeout_nbd: 60

heal_instance_info_cache_interval: 600

block_device_creation_timeout: 60

vif_plugging_timeout: 600

message_queue:
rpc_poll_timeout: 60
connection_retry_interval_max: 60
default_reply_timeout: 60
default_send_timeout: 60
default_notify_timeout: 60

7. In openstack/control.yml, define the following parameters as required. For example:

neutron:
server:
dhcp_lease_duration: 86400
agent_boot_time: 7200
message_queue:
rpc_conn_pool _size: 300
rpc_thread_pool_size: 2048
rpc_response_timeout: 3600

8. Optional. Set additional parameters to improve the RabbitMQ performance.

The following parameters should be set in correlation with each other. For example, the
value of the report interval parameter should be a half or less than the value of the
agent _down_time parameter. The report_interval parameter should be set on all nodes
where the Neutron agents are running.

* In openstack/control.yml, define the agent down time parameter as required. For
example:

©2025, Mirantis Inc. Page 465

Mirantis Cloud Platform Deployment Guide

neutron:
server:
agent_down_time: 300

* In openstack/compute/init.yml and openstack/gateway.yml, define the report interval
parameter as required. For example:

neutron:
compute:
report_interval: 120

Caution!

The time of workload being unavailable can be increased in case of the Neutron
agents failover. Though, the number of the AMQP messages in the RabbiMQ queues
can be lower.

9. Optional. To speed up message handling by the Neutron agents and Neutron API, define the
rpc_workers parameter in openstack/control.yml. The defined number of workers should be
equal to the number of CPUs multiplied by two. For example, if the number of CPU is 24, set
the rpc_workers parameter to 48:

neutron:
server:
rpc_workers: 48

10 Optional. Set the additional parameters for the Neutron server role to improve stability of
. the networking configuration:

* Set the allow_automatic_dhcp failover parameter to false. If set to true, the server
reschedules nets from the failed DHCP agents so that the alive agents catch up the net
and serve DHCP. Once the agent reconnects to RabbitMQ, the agent detects that its net
has been rescheduled and removes the DHCP port, namespace, and flows. This
parameter was implemented for the use cases when the whole gateway node goes
down. In case of the RabbitMQ instability, agents do not actually go down, and the data
plane is not affected. Therefore, we recommend that you set it to false. But you should
consider the risks of a gateway node going down as well before setting the
allow_automatic_dhcp_failover parameter.

* Define the dhcp_agents per network parameter that sets the number of the DHCP
agents per network. To have one DHCP agent on each gateway node, set the
parameter to the number of the gateway nodes in your deployment. For example,
dhcp_agents per_network: 3.

Configuration example:

©2025, Mirantis Inc. Page 466

Mirantis Cloud Platform Deployment Guide

neutron:
server:
dhcp_agents_per_network: 3
allow_automatic_dhcp_failover: false

11 Proceed to the new MCP OpenStack environment configuration and deployment as required.

Seealso

* Deploy an OpenStack environment

* Deploy an OpenStack environment manually

©2025, Mirantis Inc. Page 467

Mirantis Cloud Platform Deployment Guide

Deploy Edge Cloud MVP

This section describes how to deploy an Edge Cloud minimum viable product (MVP) based on the
Kubernetes with Calico architecture together with Virtlet and the CNI Genie plugin that enables
the Flannel CNI plugin support.

For demonstration purposes, you can also download a virtual appliance of MCP Edge. For details,
see: MCP Edge.

Warning

Edge Cloud MVP is available as technical preview. Use such configurations for testing and
evaluation purposes only.

To deploy Edge Cloud:

1. Provision three KVM nodes and three compute nodes based on Ubuntu Xenial.

Caution!

During provisioning, disable swap on the target nodes, since this feature is not
supported for Edge Cloud MVP.

2. Create bridges on the first KVM node as described in the step 3 of the Prerequisites for MCP
DriveTrain deployment procedure.

3. Set an IP for br-mgm.
4. Enable DHCP on the first interface of the br-mgm network.

5. Create a deployment metadata model:

1. Navigate to the Model Designer web Ul and click Create Model.
2. In the Version drop-down menu, select 2018.11.0 and click Continue.

3. In the General parameters section, set the parameters as required and change the
below ones as follows:

1. In Public host, specify ${_param:kubernetes proxy address}.
. In Deployment type, select Physical.

. In OpenSSH groups, specify lab,k8s_team.

. In Platform, select Kubernetes.

. Disable OpenContrail, StackLight, Ceph, CICD, and OSS.

. Enable Use default network scheme.

o U~ W N

©2025, Mirantis Inc. Page 468

https://www.mirantis.com/software/mcp-edge/
https://mm.mcp.mirantis.net

Mirantis Cloud Platform Deployment Guide

7.
8.

Enable Kubernetes Control on KVM.

Specify the deploy and control subnets.

4. In the Infrastructure parameters section:

1.
2.

3.

Disable MAAS.

In Kubernetes Networking, select the following plugins:

e Kubernetes network calico enabled
e Kubernetes network flannel enabled
* Kubernetes network genie enabled

* Kubernetes metallb enabled
Set other parameters as required.

5. In the Product parameters section:

1.

0o N o U A W N

9.

Specify the KVM hostnames and IP addresses. The KVM hosts must have the
hostnames kvmO01, kvmO02, kvm03 due to a limitation in the Jenkins pipeline jobs.

. Set the subnets for Calico and Flannel.

. In Metallb addresses, specify the MetalLB public address pool.
. Select Kubernetes virtlet enabled.

. Select Kubernetes containerd enabled.

. In Kubernetes compute count, specify 3.

. In Kubernetes keepalived vip interface, specify ens3.

. In Kubernetes network scheme for master nodes, select Virtual - deploy interface

+ single control interface.

In Kubernetes network scheme for compute nodes, select the scheme as required.

10 Specify the names of the Kubernetes network interfaces and addresses.

6. Generate the model and obtain the ISO configuration drive from email received after
you generated the deployment metadata model or from the Jenkins pipeline job
artifacts.

6. Log in to the KVM node where the Salt Master node is deployed.

7. Download the ISO configuration drive obtained after completing the step 5 of this
procedure.

8. Create and configure the Salt Master VM. For details, see: Deploy the Salt Master node.

9. Once the Salt Master node is up and running, set the salt-minion configurations on each
kvm and cmp node.

©2025, Mirantis Inc. Page 469

Mirantis Cloud Platform Deployment Guide

Warning

Due to a limitation in the Jenkins deployment pipeline job, the kvm nodes must have
the minion IDs kvmO01.domain, kvm02.domain, kvm03.domain with a proper domain.

10 Verify that all nodes are connected to the Salt Master node using the salt-key state.

11 Verify that all nodes are up and running:
salt "*' test.ping

12 In a web browser, open http://<ip address>:8081 to access the Jenkins web UlI.

Note

The IP address is defined in the classes/cluster/<cluster_name>/cicd/init.yml file of
the Reclass model under the cicd_control_address parameter variable.

13 Log in to the Jenkins web Ul as an admin.

Note
To obtain the password for the admin user, run the
salt "cid*" pillar.data _param:jenkins_admin_password command from the Salt Master
node.

14 In the Deploy - OpenStack Jenkins pipeline job, define the STACK INSTALL: core,kvm,k8s
. parameters.

15 Click Build.

Seealso

* View the deployment details

©2025, Mirantis Inc. Page 470

Mirantis Cloud Platform Deployment Guide

Configure Salt Master threads and batching

Note

This feature is available starting from the MCP 2019.2.6 maintenance update. Before
using the feature, follow the steps described in Apply maintenance updates.

You can configure the number of worker threads for Salt Master based on the number of CPUs
available on your Salt Master node.

Also, you can set up batching for the pipeline jobs to run Salt states, targeted for a large number
of nodes, on a batch of nodes and define the batch size. By default, batching is force-enabled for
the Deploy - OpenStack and Deploy - upgrade MCP DriveTrain Jenkins pipeline jobs as they do
not support node targeting. Batch sizing is by default supported by the Deploy - OpenStack,
Deploy - update system package(s), and Deploy - upgrade MCP DriveTrain Jenkins pipeline jobs.

To configure Salt Master threads:

1. Open your Git project repository with the Reclass model on the cluster level.

2. In infra/config/init.yml, specify the following pillar for the cfg01 node:

salt:
master:
worker_threads_per_cpu: <value>

Depending on the amount of CPUs, the total amount of worker threads is based on
worker_threads per cpu multiplied by the number of CPUs. By default, the number of
worker threads is set to 40 using the following pillar:

salt:
master:
worker_threads: 40

If both worker_threads _per cpu and worker_threads are defined, worker_threads per cpu is
prioritized.

3. Log in to the Salt Master node.
4. Apply the following state:

salt-call state.sls salt.master

5. Verify that the required settings have been applied:

cat /etc/salt/master.d/master.conf | grep worker_threads

©2025, Mirantis Inc. Page 471

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/mu/mu-6/mu-6-apply-updates.html

Mirantis Cloud Platform Deployment Guide

To configure Salt Master batching:

1. Open the required Jenkins pipeline job.
2. Configure batch sizing:

* For the Deploy - OpenStack, Deploy - update system package(s), and Deploy - upgrade
MCP DriveTrain Jenkins pipeline jobs, set the BATCH_SIZE parameter to an integer or
percentage. For example, 20 or 20%.

Batch sizing applies using the following workflow:

1. Verifies that the BATCH_SIZE pipeline job parameter exists.
2. Verifies the SALT_MASTER_OPT_WORKER_THREADS environment variable.

3. Verifies the worker_threads_per_cpu pillar parameter and the available number of
CPUs.

4. Verifies the worker_threads pillar parameter.

5. If none of the steps above match:

* Prior to the MCP 2019.2.8 maintenance update, disables batching.

* Starting from the MCP 2019.2.8 maintenance update, sets batching to 2/3 of
the available Salt Master worker threads.
* For other pipeline jobs, to use batching, set the SALT_MASTER_OPT_WORKER_THREADS
environment variable in the global Jenkins settings or directly in the pipeline jobs to an
integer or percentage. For example, 20 or 20%.

Batch sizing applies using the following workflow:
1. Verifies that the BATCH_SIZE pipeline job parameter exists.
2. Verifies the SALT_MASTER_OPT_WORKER_THREADS environment variable.

3. If none of the steps above match:

* Prior to the MCP 2019.2.8 maintenance update, disables batching.

* Starting from the MCP 2019.2.8 maintenance update, sets batching to 2/3 of
the available Salt Master worker threads.

©2025, Mirantis Inc. Page 472

	Copyright notice
	Preface
	Intended audience
	Documentation history

	Introduction
	Plan the deployment
	Prepare for the deployment
	Create a project repository
	Create a deployment metadata model
	Enable all secrets encryption
	Define the deployment model
	General deployment parameters
	Infrastructure related parameters
	Product related parameters
	Publish the deployment model to a project repository

	Deploy MCP DriveTrain
	Prerequisites for MCP DriveTrain deployment
	Deploy the APT node
	Deploy the Salt Master node
	Verify the Salt infrastructure
	Enable the management of the APT node through the Salt Master node
	Configure MAAS for bare metal provisioning
	Provision physical nodes using MAAS
	Automatically commission and provision the physical nodes
	Automatically commission the physical nodes
	Provision the automatically commissioned physical nodes

	Manually commission and provision the physical nodes
	Manually discover and commission the physical nodes
	Manually provision the physical nodes

	Deploy physical nodes
	Deploy VCP
	Prepare KVM nodes to run the VCP nodes
	Verify the salt-common and salt-minion versions
	Install the correct versions of salt-common and salt-minion
	Partitioning of a VCP node
	Specifying the VCP network/disk metadata
	Passing the cloud-init data to a VCP node
	Specifying the cloud-init data to grow an LVM-based VCP node

	Create and provision the control plane VMs

	Deploy CI/CD

	Deploy an MCP cluster using DriveTrain
	Deploy an OpenStack environment
	Deploy a multi-site OpenStack environment
	Deploy a Kubernetes cluster
	Prerequisites
	Deploy a Kubernetes cluster on bare metal
	Deploy ExternalDNS for Kubernetes
	Prepare a DNS backend for ExternalDNS
	Configure cluster model for ExternalDNS
	Deploy ExternalDNS
	Verify ExternalDNS after deployment
	Verify ExternalDNS with Designate backend after deployment
	Verify ExternalDNS with CoreDNS backend after deployment
	Verify ExternalDNS with Google CloudDNS backend after deployment
	Verify ExternalDNS with AWS Route 53 backend after deployment

	Deploy OpenStack cloud provider for Kubernetes
	Considerations when using the OpenStack cloud provider
	Enable the OpenStack cloud provider
	Verify the OpenStack cloud provider after deployment
	Troubleshoot the OpenStack cloud provider

	Deploy StackLight LMA with the DevOps Portal
	View credentials details used in Jenkins pipelines
	View the deployment details

	Deploy an MCP cluster manually
	Deploy an OpenStack environment manually
	Prepare VMs to install OpenStack
	Enable TLS support
	Encrypt internal API HTTP transport with TLS
	Enable TLS for RabbitMQ and MySQL backends
	Enable TLS for client-server communications
	Enable libvirt control channel and live migration over TLS
	Enable TLS encryption between the OpenStack compute nodes and VNC clients
	Configure OpenStack APIs to use X.509 certificates for MySQL
	Configure OpenStack APIs to use X.509 certificates for RabbitMQ

	Install support services
	Deploy Keepalived
	Deploy NTP
	Deploy GlusterFS
	Deploy RabbitMQ
	Deploy Galera (MySQL)
	Deploy HAProxy
	Deploy Memcached
	Deploy a DNS backend for Designate
	Deploy BIND9 for Designate
	Configure an existing BIND9 server for Designate
	Prepare a deployment model for a new BIND9 server
	Deploy a new BIND9 server for Designate

	Deploy PowerDNS for Designate
	Configure an existing PowerDNS server for Designate
	Prepare a deployment model for a new PowerDNS server with the worker role
	Prepare a deployment model for a new PowerDNS server with the pool_manager role
	Enable the MySQL backend for PowerDNS
	Deploy a new PowerDNS server for Designate

	Install OpenStack services
	Deploy Keystone
	Deploy Glance
	Deploy Nova
	Deploy Cinder
	Deploy Neutron
	Deploy Horizon
	Deploy Heat
	Deploy Tenant Telemetry
	Deploy Tenant Telemetry on a new cluster
	Deploy Tenant Telemetry on an existing cluster
	Prepare the cluster deployment model
	Deploy Tenant Telemetry

	Deploy Designate
	Prepare a deployment model for the Designate deployment
	Install Designate

	Deploy Barbican
	Deploy Dogtag
	Deploy Barbican with the Dogtag backend
	Deploy Barbican with the simple_crypto backend

	Deploy Ironic
	Limitations
	Modify the deployment model
	Install the Bare Metal service components

	Deploy Manila
	Modify the deployment model
	Install the Manila components

	Secure memcached for the OpenStack services
	Deploy a Ceph cluster
	Prerequisites for a Ceph cluster distributed over L3 domains
	Deploy a Ceph cluster

	Deploy Xtrabackup for MySQL
	Post-deployment procedures
	Run non-destructive Rally tests
	Modify Salt Master password expiration

	Troubleshoot
	Troubleshooting the server provisioning
	Virtual machine node stops responding

	Troubleshoot Ceph
	Troubleshoot an encrypted Ceph OSD

	Deploy a Kubernetes cluster manually
	Prerequisites
	Salt formulas used in the Kubernetes cluster deployment
	Add swap configuration to a Kubernetes deployment model
	Define interfaces
	Deploy a Kubernetes cluster
	Enable horizontal pod autoscaling
	Enable Virtlet
	Deploy Virtlet
	Verify Virtlet after deployment

	Enable the MetalLB support
	Enable the NGINX Ingress controller
	Enable an external Ceph RBD storage
	Enable Helm support

	Deploy OpenContrail manually
	Deploy OpenContrail
	Deploy OpenContrail 4.1 for OpenStack

	Deploy compute nodes
	Deploy the DevOps Portal manually
	Configure services in the Reclass model
	Deploy OSS services manually
	Build a custom image of the DevOps Portal
	Configure Salesforce integration for OSS manually
	Configure email integration for OSS manually

	Deploy StackLight LMA
	Prerequisites
	Install the system-level Stacklight LMA services
	Install Elasticsearch and Kibana
	Configure Elasticsearch and Kibana
	Deploy Elasticsearch and Kibana
	Verify Elasticsearch and Kibana after deployment

	Install Galera (MySQL)

	Install the StackLight LMA components
	Verify the StackLight LMA components after deployment

	Finalize the deployment

	Deployment customizations guidelines
	Generate configuration drives manually
	Add custom commissioning scripts
	Customize the prebuilt mirror node
	Enable the APT node management in the Reclass model
	Customize the prebuilt mirrors
	Create local mirrors manually
	Enable authentication for Aptly repositories
	Configure Aptly authentication through HAProxy
	Configure Aptly authentication through NGINX
	Enable authentication for Aptly repositories

	Configure PXE booting over UEFI
	Manage kernel version
	Add a custom disk layout per node in the MCP model
	Enable NTP authentication
	Enable a watchdog
	Enable the Linux Audit system
	Configure a company name for the SSH and interactive logon disclaimer
	Configure secure SSH ciphers
	Set custom Transmit Queue Length
	Configure a CPU model
	Configure Galera parameters
	Configure HAProxy parameters
	Use secured sources for mirrors, repositories, and files

	Advanced configuration
	Enable NFV features
	Enable DPDK
	Limitations
	Enable OVS DPDK
	Prepare your environment for OVS DPDK
	Enable OVS DPDK support

	Enable OpenContrail DPDK

	Enable SR-IOV
	Prerequisites
	Enable generic SR-IOV configuration
	Configure SR-IOV with OpenContrail
	Configure SR-IOV with OpenVSwitch
	Create instances with SR-IOV ports

	Enable Huge Pages
	Enable the Huge Pages support
	Boot a virtual machine with Huge Pages

	Configure NUMA and CPU pinning architecture
	Enable NUMA and CPU pinning
	Boot a VM with two NUMA nodes
	Boot a VM with CPU and memory pinning

	Enable Multiqueue
	Provision a VM with Multiqueue

	Configure load balancing with OpenStack Octavia
	Enable Octavia on a new OpenStack environment
	Enable Octavia on an existing OpenStack environment
	Example of a load balancing topology
	Example of a load balancing topology with TLS support
	Move the Octavia certificates from the gtw01 to the Salt Master node

	Configure LDAP integration with MCP
	Configure LDAP with Keystone server
	Configure LDAP with host OS

	Tune the RabbitMQ performance in the OpenStack with OVS deployments
	Deploy Edge Cloud MVP
	Configure Salt Master threads and batching

