
MCP Reference Architecture
version q4-18

Contents
Copyright notice 1
Preface 2

Intended audience 2
Documentation history 2

Introduction 3
MCP capabilities 3
MCP design 3

DriveTrain 4
MCP clusters 4

Cloud infrastructure 6
Infrastructure management capabilities 6
Deployment and lifecycle management automation 7

LCM pipeline overview 7
High availability in DriveTrain 8
SaltStack and Reclass metadata model 9

Infrastructure nodes overview 11
Infrastructure nodes disk layout 12
Hardware requirements for Cloud Provider Infrastructure 13
Control plane virtual machines 15
Networking 18

Server networking 18
Access networking 18
Switching fabric capabilities 19

Multi-cluster architecture 20
Staging environment 22

OpenStack cluster 24
OpenStack cloud capabilities 24
OpenStack compact cloud 25
OpenStack Cloud Provider infrastructure 28
OpenStack large cloud 30
Virtualized control plane 34

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page i

Virtualized control plane overview 34
OpenStack VCP Core services 34
OpenStack VCP extension services 35
OpenStack VCP extra services 36

Manila storage networking planning 38
Ironic planning 39

Ironic components 39
Ironic network logic 40
MCP Ironic supported features and known limitations 41

Virtualized control plane layout 43
High availability in OpenStack 44
Secure OpenStack API 46

Compute nodes planning 48
OpenStack network architecture 50

Selecting a network technology 50
Types of networks 51
MCP external endpoints 53
Storage traffic 54
Neutron OVS networking 56

Limitations 56
Node configuration 56

Network node configuration for VXLAN tenant networks 57
Network node configuration for VLAN tenant networks 57

VCP hosts networking 58
Neutron VXLAN tenant networks with network nodes for SNAT (DVR for
all)

58

Plan the Domain Name System 61
Plan load balancing with OpenStack Octavia 62

Storage planning 64
Image storage planning 65
Block storage planning 65
Object storage planning 66
Ceph planning 67

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page ii

MCP Ceph cluster overview 67
Ceph services 69
Additional Ceph considerations 70
Ceph OSD hardware considerations 74

Tenant Telemetry planning 75
Heat planning 79

Kubernetes cluster 82
Kubernetes cluster overview 82
Kubernetes cluster components 84
Network planning 86

Types of networks 87
Calico networking considerations 88
Network checker overview 89
MetalLB support 90

Etcd cluster 91
High availability in Kubernetes 91
Virtual machines as Kubernetes pods 93

Limitations 94
Virtlet manager 95
Virtlet tapmanager 95
Virtlet vmwrapper 95
Container Runtime Interface Proxy 96

OpenStack cloud provider for Kubernetes 96
OpenContrail 99

Limitations 99
OpenContrail cluster overview 100

OpenContrail 3.2 cluster overview 101
OpenContrail 4.x cluster overview 102

OpenContrail components 104
OpenContrail 3.2 components 105
OpenContrail 4.x components 108

OpenContrail traffic flow 110

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page iii

User Interface and API traffic 110
SDN traffic 111

OpenContrail vRouter 112
OpenContrail HAProxy driver with LBaaSv2 113
OpenContrail IPv6 support 114

StackLight LMA 116
StackLight LMA overview 116
StackLight LMA components 117
StackLight LMA high availability 122
Monitored components 123
StackLight LMA resource requirements per cloud size 125

Repository planning 127
Local mirror design 127
Mirror image content 130

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page iv

Copyright notice
2025 Mirantis, Inc. All rights reserved.
This product is protected by U.S. and international copyright and intellectual property laws. No
part of this publication may be reproduced in any written, electronic, recording, or photocopying
form without written permission of Mirantis, Inc.
Mirantis, Inc. reserves the right to modify the content of this document at any time without prior
notice. Functionality described in the document may not be available at the moment. The
document contains the latest information at the time of publication.
Mirantis, Inc. and the Mirantis Logo are trademarks of Mirantis, Inc. and/or its affiliates in the
United States an other countries. Third party trademarks, service marks, and names mentioned
in this document are the properties of their respective owners.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 1

Preface
This documentation provides information on how to use Mirantis products to deploy cloud
environments. The information is for reference purposes and is subject to change.

Intended audience
This documentation is intended for deployment engineers, system administrators, and
developers; it assumes that the reader is already familiar with network and cloud concepts.

Documentation history
The following table lists the released revisions of this documentation:

Revision date Description
February 8, 2019 Q4`18 GA

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 2

Introduction
Mirantis product is Mirantis Cloud Platform (MCP). This is a software product that is installed on
bare metal servers in a datacenter and provides virtualization cloud capabilities to the end users
of the platform. MCP also includes deployment and lifecycle management (LCM) tools that
enable cloud operators to deploy and update the Mirantis Cloud Platform using automated
integration and delivery pipeline.

MCP capabilities
Mirantis Cloud Platform (MCP) provides two broad categories of capabilities to two distinct
groups of users:

• Cloud operators
Users from this category are engineers responsible for operations of the cloud platform.
They are interested in stability of the platform, reliable life cycle operations, and timely
update of the platform software.

• Tenant users
Users from this category run workloads on the cloud platform using interfaces provided
by the platform. They need to understand what types of virtual resources are available
on the cloud platform, how to utilize them, and what are the limitations of the platform
interfaces.

Cloud operators and administrators can use MCP to manage the following elements of the cloud
platform infrastructure:

• Physical infrastructure
Hardware servers, host operating system.

• Cloud platform software
Hypervisors, control plane services, identity information.

• Network configuration
Host networking, IP routing, filtering, and VPN.

Tenant users can use MCP to manage the following resources provided by the cloud platform:

• Virtual infrastructure
Virtual server instances and/or containers, virtual networks and resources, virtual
storage, and tenants identity information.

• Applications running on the infrastructure
Any workloads that run in the virtual infrastructure using resources of physical
infrastructure agnostically through virtualization mechanisms.

MCP design
Mirantis Cloud Platform provides capabilites described above as functions of its software
components.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 3

DriveTrain
DriveTrain is code name for the MCP LCM framework that includes Gerrit, Jenkins, MCP Registry,
SaltStack, Reclass, and metadata model. The DriveTrain components perform the following
functions:

• SaltStack
Flexible and scalable deployment and configuration management and orchestration
engine that is used for automated lifecycle management of MCP clusters.

• Reclass
Reclass is an External Node Classifier (ECN) that, coupled with SaltStack, provides an
inventory of nodes for easy configuration management.

• Reclass metadata model
The metadata model is a hierarchical file based store that allows to define all parameter
values used by Salt to configure services of MCP. The model hierarchy is merged and
exposed to Salt through the Reclass ENC.

• Gerrit
Git repository and code review management system in which all MCP codebase and the
metadata model are stored and through which all changes to MCP clusters are
delivered.

• Jenkins
Build automation tool that, coupled with Gerrit, enables continuous integration and
continuous delivery of updates and upgrades to the MCP clusters.

• MCP Registry
A set of repositories with binary artifacts required for MCP cluster deployment and
functioning. This is a local mirror of Registry published by Mirantis from its product
delivery infrastructure.

• MAAS
Metal-as-a-Service (MAAS) is a provisioning software that allows you to manage physical
machines.

• OpenLDAP
OpenLDAP server stores and provides identity information for other components of
DriveTrain and, optionally, for MCP clusters.

MCP clusters
Using DriveTrain, you can deploy and manage multiple MCP clusters of different types. MCP
clusters provide certain Operator and Tenant functions, as described below.

• StackLight Logging, Monitoring, and Alerting (LMA)
Responsible for collection, analysis, and visualization of critical monitoring data from
physical and virtual infrastructure, as well as alerting and error notifications through a
configured communication system, such as email.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 4

• OpenStack
Platform that manages virtual infrastructure resources, including virtual servers,
storage devices, networks and networking services such as load balancers, and
provides management functions to Tenant users.

• Kubernetes support terminated since 2019.2.5

Platform that manages virtual infrastructure resources, including container images,
pods, storage and networking resources for containerized applications.

• Ceph
Distributed storage platform that provides storage resources, such as objects and
virtual block devices, to virtual and physical infrastructure.

• OpenContrail (optional)
MCP enables you to deploy OpenContrail as a software-defined networking solution.
MCP OpenContrail is based on official OpenContrail releases with additional
customizations by Mirantis.

Note
If you run MCP OpenContrail SDN, you need to have Juniper MX or SRX hardware
or virtual router to route traffic to and from OpenStack tenant VMs.

• High Availability
In MCP, the high availability of control plane services is ensured by Keepalived and
HAProxy. Keepalived is a Linux daemon that provides redundancy for virtual IP
addresses. HAProxy provides load balancing for network connections.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 5

Cloud infrastructure
A cloud infrastructure consists of the physical infrastructure, network configuration, and cloud
platform software.
In large data centers, the cloud platform software required for managing user workloads runs on
separate servers from where the actual workloads run. The services that manage the workloads
coupled with the hardware on which they run are typically called the control plane, while the
servers that host user workloads are called the data plane.
In MCP, the control plane is hosted on the infrastructure nodes. Infrastructure nodes run all the
components required for deployment, lifecycle management, and monitoring of your MCP
cluster. A special type of infrastructure node called the foundation node, in addition to other
services, hosts a node that runs the bare-metal provisioning service called MAAS and the Salt
Master service that provides infrastructure automation.
MCP employs modular architecture approach by using the Reclass model to describe
configuration and distribution of services across the infrastructure nodes. This allows the product
to arrange the same services into different configurations depending on the use case.

Infrastructure management capabilities
MCP provides the following infrastructure management capabilities to cloud operators and
administrators:

• Install MCP and its components on bare metal infrastructure.
• Update components of MCP to improve existing capabilities and get security or other fixes.
• Upgrade cloud platform components and other components of MCP installation to gain new

capabilities.
• Add, remove, and replace elements of the control plane and data plane physical and virtual

infrastructure, including hypervisor servers and servers that host control plane services.
• Configure bare metal servers, including disk and network settings, operating system, and IP

routing.
• Collect and expose metrics and logs from the infrastructure.
• Generate alerts and notifications about events in the infrastructure.
• Deploy distributed massively-scaled shared storage (Ceph) and attach it to a cloud in order

to provide reliable storage to virtual machines.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 6

Deployment and lifecycle management automation
MCP utilizes the Infrastructure-as-Code concept for deployment and lifecycle management of a
cloud datacenter. In this concept, all infrastructure elements are described in definition files.
Changes in the files are reflected in the configuration of datacenter hosts and cloud services.
DriveTrain is the lifecycle management (LCM) engine of MCP. It allows cloud operators to deploy
and manage MCP clusters.
DriveTrain implements an opinionated approach to Infrastructure-as-Code. Cloud operators can
use DriveTrain to describe their infrastructures as declarative class-based metadata model.
Changes in the model parameters are applied through DriveTrain LCM orchestration.
The LCM orchestration is handled by Groovy pipelines executed by the Jenkins server. The
configuration management is provided by Salt formulas executed by the SaltStack agents
(minions).

LCM pipeline overview
DriveTrain implements lifecycle management (LCM) operations as Jenkins pipelines. For the list
of the components of DriveTrain, see MCP design.
The following diagram describes the workflow of the DriveTrain LCM pipeline:

LCM pipeline workflow

Description
1 An operator submits changes to the cluster metadata model in Gerrit for

review and approval.
2 Depending on your configuration and whether you have a staging

environment or deploy changes directly to a production MCP cluster, the
workflow might slightly differ. Typically, with a staging MCP cluster, you
trigger a deployment job in Jenkins before merging the change. This allows
you to verify it before promoting to production. However, if you deploy an
MCP cluster onto production, you might want to approve and merge the
change first.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 7

3 Jenkins job invokes the required SaltStack formulas and Reclass models from
Gerrit and artifacts from the MCP Registry.

4 SaltStack applies changes to the cloud environment.

Seealso

• Local mirror design
• Mirror image content

High availability in DriveTrain
DriveTrain is the integration framework for the MCP product. Therefore, its continuous
availability is essential for the MCP solution to function properly. Although you can deploy
DriveTrain in the single node Docker Swarm mode for testing purposes, most production
environments require a highly-available DriveTrain installation.
All DriveTrain components run as containers in Docker Swarm mode cluster which ensures
services are provided continuously without interruptions and are susceptible to failures.
The following components ensure high availability of DriveTrain:

• Docker Swarm mode is a special Docker mode that provides Docker cluster management.
Docker Swarm cluster ensures:

• High availability of the DriveTrain services. In case of failure on any infrastructure node,
Docker Swarm reschedules all services to other available nodes. GlusterFS ensures the
integrity of persistent data.

• Internal network connectivity between the Docker Swarm services through the Docker
native networking.

• Keepalived is a routing utility for Linux that provides a single point of entry for all DriveTrain
services through a virtual IP address (VIP). If the node on which the VIP is active fails,
Keepalived fails over the VIP to other available nodes.

• nginx is web-server software that exposes the DriveTrain service’s APIs that run in a private
network to a public network space.

• GlusterFS is a distributed file system that ensures the integrity of the MCP Registry and
Gerrit data by storing the data in a shared storage on separate volumes. This ensures that
persistent data is preserved during the failover.

The following diagram describes high availability in DriveTrain:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 8

SaltStack and Reclass metadata model
SaltStack is an automation tool that executes formulas. Each SaltStack formula defines one
component of the MCP cluster, such as MySQL, RabbitMQ, OpenStack services, and so on. This
approach enables MCP product developers to combine the components as needed so that
services do not interfere with each other and can be reused in multiple scenarios.
Reclass is an external node classifier (ENC) which enables cloud operators to manage an
inventory of nodes by combining different classes into MCP cluster configurations. Reclass
operates classes which you can view as tags or categories of metadata parameters.
The metadata model itself consists of hierarchically structured classes and corresponding
parameters.
The following diagram displays the Mirantis Reclass metadata model’s hierarchy of classes:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 9

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 10

MCP reclass classes

Service class System class Cluster class
A service class defines one
service, or a group of related
services, and the most
specific configuration
parameters for them. The
parameters in this layer of
the metadata model are
translated directly into values
in the configuration files for
the corresponding service,
and so on.
The service classes are
provided by and match the
Salt formulas installed onto
the Salt Master node. A
metadata parameter value
defined in one of the service
classes might be overridden
by values from higher levels
in the hierarchy, which
include the system and
cluster levels.

A system class defines a role
(with different granularity)
that is applied to a node,
logical or physical. System
classes typically include and
combine service classes and
other system classes in a way
to describe completely
configured, integrated, and
ready-to-use system.
The system classes are
distributed as a Git
repository. The repository is
copied to the Salt Master
node during the bootstrap of
DriveTrain.
A metadata parameter value
set in a system class could be
overridden by the values
from a higher level in the
hierarchy, which is the cluster
level.

A cluster class defines
configuration of a specific
MCP cluster. This kind of
classes can combine system
classes according to the
architecture of the cluster.
A cluster metadata model is
typically generated using the
automation pipeline that is
executed by DriveTrain
Jenkins. This pipeline uses
Cookiecutter as a templating
tool to generate the cluster
model.
The cluster metadata model
is distributed as a Git
repository.

Infrastructure nodes overview
Infrastructure nodes are the physical machines that run all required services for the MCP cluster
deployment, lifecycle management, and monitoring, also known as control plane services.
The exact number of the infrastructure nodes in each MCP environment and distribution of the
MCP components across the infrastructure nodes depend on the use case and are defined in the
deployment model.
The MCP Cloud Provider Reference Configuration requires 9 infrastructure nodes to run control
plane services. See OpenStack compact cloud for details.

Note
You can use either Neutron or OpenContrail SDN, but not both at the same time.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 11

Seealso
Hardware requirements for Cloud Provider Infrastructure

Infrastructure nodes disk layout
Infrastructure nodes are typically installed on hardware servers. These servers run all
components of management and control plane for both MCP and the cloud itself. It is very
important to configure hardware servers properly upfront because changing their configuration
after initial deployment is costly.
For instructions on how to configure the disk layout for MAAS to provision the hardware
machines, see MCP Deployment Guide: Add a custom disk layout per node in the MCP model.
Consider the following recommendations:
Layout

Mirantis recommends using the LVM layout for disks on infrastructure nodes. This option
allows for more operational flexibility, such as resizing the Volume Groups and Logical
Volumes for scale-out.

LVM Volume Groups
According to Hardware requirements for Cloud Provider Infrastructure, an infrastructure
node typically has two or more SSD disks. These disks must be configured as LVM Physical
Volumes and joined into a Volume Group.
The name of the Volume Group is the same across all infrastructure nodes to ensure
consistency of LCM operations. Mirantis recommends following the vg_<role> naming
convention for the Volume Group. For example, vg_root.

LVM Logical Volumes
The following table summarizes the recommended Logical Volume schema for infrastructure
nodes in the CPI reference architecture. The /var/lib/libvirt/images/ size may be adjusted to
the size of all VMs hosted on the node depending on the VCP VMs size. The disk size for a
large deployment may require more that 3 TB for StackLight LMA and OpenContrail.
Follow the instructions in the MCP Deployment Guide to configure infrastructure nodes in
your cluster model.

Logical Volume schema for infrastructure nodes in CPI

Server role Server
names

Logical
Volume

path
Mount
point Size

All roles kvm01 -
kvm09

/dev/vg_root
/lv_root

'/' 50 GB

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 12

https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/deployment-customizations-guidelines/maas/custom-disk-layout.html

VCP infrastructure kvm01,
kvm02,
kvm03

/dev/vg_root
/lv_gluster

/srv/glusterf
s

200 GB

VCP infrastructure kvm01,
kvm02,
kvm03

/dev/vg_root
/lv_mcp_ima
ges

/var/lib/libvi
rt/images

1200 GB

StackLight LMA kvm04,
kvm05,
kvm06

/dev/vg_root
/lv_mcp_ima
ges

/var/lib/libvi
rt/images

5500 GB

Tenant gateway kvm07,
kvm08,
kvm09

/dev/vg_root
/lv_mcp_ima
ges

/var/lib/libvi
rt/images

700 GB

Hardware requirements for Cloud Provider Infrastructure
The reference architecture for MCP Cloud Provider Infrastructure (CPI) use case requires 9
infrastructure nodes to run the control plane services.
The following diagram displays the components mapping of the infrastructure nodes in the CPI
reference architecture.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 13

Hardware requirements for the CPI reference architecture are based on the capacity
requirements of the control plane virtual machines and services. See details in Virtualized
control plane layout.
The following table summarizes the actual configuration of the hardware infrastucture nodes
used by Mirantis to validate and verify the CPI reference architecture. Use it as a reference to
plan the hardware bill of materials for your installation of MCP.

Hardware requirements for CPI

Server
role

Ser
ver
s n
um
ber

Server
model

CPU
model

CP
Us
nu
mb
er

vC
ore
s n
um
ber

RA
M,
GB

Stora
ge,
GB

NIC
model

NIC
s n
um
ber

Infrastruct
ure node
(VCP)

3 Supermicro S
YS-6018R-TD
W

Intel E5-2
650v4

2 48 256 1900 1 Intel
X520-DA2

2

Infrastruct
ure node (
StackLight
LMA)

3 Supermicro S
YS-6018R-TD
W

Intel E5-2
650v4

2 48 256 5700 2 Intel
X520-DA2

2

Tenant
gateway

3 Supermicro S
YS-6018R-TD
W

Intel E5-2
620v4

1 16 96 960 3 Intel
X520-DA2

2

Compute
node

50
to
150

Supermicro S
YS-6018R-TD
W

4 4 4 4 960 3 5 Intel
X520-DA2

2

Ceph OSD 9+
6

Supermicro S
YS-6018R-TD
W

Intel E5-2
620v4

1 16 96 960 3 7 Intel
X520-DA2

2

1 One SSD, Micron 5200 MAX or similar.
2 Three SSDs, 1900 GB each, Micron 5200 MAX or similar.
3(1, 2, 3) Two SSDs, 480 GB each, WD Blue 3D (WDS500G2B0A) or similar.
4(1, 2, 3, 4) Depends on capacity requirements and compute planning. See details in

Compute nodes planning.
5 Minimal system storage. Additional storage for virtual server instances might

be required.
6 Minimal recommended number of Ceph OSD nodes for production deployment

is 9. See details in Additional Ceph considerations.
7 Minimal system storage. Additional devices are required for Ceph storage,

cache, and journals. For more details on Ceph storage configuration, see Ceph
OSD hardware considerations.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 14

Note
RAM capacity of this hardware configuration includes overhead for GlusterFS servers
running on the infrastructure nodes (kvm01, kvm02, and kvm03).
The rule of thumb for capacity planning of the infrastructure nodes is to have at least 10%
more RAM than planned for all virtual machines on the host combined. This rule is also
applied by StackLight LMA, and it will start sending alerts if less than 10% or 8 GB of RAM
is free on an infrastructure node.

Seealso
Virtualized control plane

Control plane virtual machines
MCP cluster infrastructure consists of a set of virtual machines that host the services required to
manage workloads and respond to API calls.
MCP clusters includes a number of logical roles that define functions of its nodes. Each role can
be assigned to a specific set of the control plane virtual machines. This allows to adjust the
number of instances of a particular role independently of other roles, providing greater flexibility
to the environment architecture.
To ensure high availability and fault tolerance, the control plane of an MCP cluster typically
spreads across at least three physical nodes. However, depending on your hardware you may
decide to break down the services on a larger number of nodes. The number of virtual instances
that must run each service may vary as well.
The reference architecture for Cloud Provider Infrastructure use case uses 9 infrastructure nodes
to host the MCP control plane services.
The following table lists the roles of infrastructure logical nodes and their standard code names
used throughout the MCP metadata model:

MCP infrastructure logical nodes

Server role
Server role

codename in
metadata

model
Description

Infrastructure node kvm Infrastructure KVM hosts that provide
virtualization platform all VCP component

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 15

Network node gtw Nodes that provide tenant network data plane
services.

DriveTrain Salt Master
node

cfg The Salt Master node that is responsible for
sending commands to Salt Minion nodes.

DriveTrain LCM engine
node

cid Nodes that run DriveTrain services in
containers in Docker Swarm mode cluster.

RabbitMQ server node msg Nodes that run the message queue server
(RabbitMQ).

Database server node dbs Nodes that run the clustered MySQL database
(Galera).

OpenStack controller node ctl Nodes that run the Virtualized Control Plane
service, including the OpenStack API servers
and scheduler components.

OpenStack compute node cmp Nodes that run the hypervisor service and VM
workloads.

OpenStack DNS node dns Nodes that run OpenStack DNSaaS service
(Designate).

OpenStack secrets
storage nodes

kmn Nodes that run OpenStack Secrets service
(Barbican).

OpenStack telemetry
database nodes

mdb Nodes that run the Telemetry monitoring
database services.

Proxy node prx Nodes that run reverse proxy that exposes
OpenStack API, dashboards, and other
components externally.

Contrail controller nodes ntw Nodes that run the OpenContrail controller
services.

Contrail analytics nodes nal Nodes that run the OpenContrail analytics
services.

StackLight LMA log nodes log Nodes that run the StackLight LMA logging
and visualization services.

StackLight LMA database
nodes

mtr Nodes that run the StackLight database
services.

StackLight LMA nodes mon Nodes that run the StackLight LMA monitoring
services.

Ceph RADOS gateway
nodes

rgw Nodes that run Ceph RADOS gateway
daemon and expose Object Storage API.

Ceph Monitor nodes cmn Nodes that run Ceph Monitor service.
Ceph OSD nodes osd Nodes that provide storage devices for Ceph

cluster.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 16

Note
In the Cloud Provider reference configuration, Ceph OSDs run on dedicated hardware
servers. This reduces operations complexity, isolates the failure domain, and helps avoid
resources contention.

Seealso
OpenStack compact cloud

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 17

Networking
This section describes the key hardware recommendations on server and infrastructure
networking, as well as switching fabric capabilities for CPI reference architecture.

Server networking
Server machines used in CPI reference architecture have 1 built-in dual port 1 GbE network
interface card (NIC), and two additional 1/10 GbE NICs.
The built-in NIC is used for network boot of the servers. Only one interface is typically for PXE
boot, the other one is kept unused for redundancy.
The first pair of 1/10 Gbit Ethernet interfaces is used for the management and control plane
traffic. These interfaces should be connected to an access switch in 1 or 10 GbE mode.
In CPI referernce architecture, the interfaces of the first NIC are joined in a bond logical interface
in 802.3ad mode.
The second NIC with two interfaces is used for the data plane traffic and storage traffic. On the
operating system level, ports on this 1/10 GbE card are joined into an LACP bond (Linux bond
mode 802.3ad).
Recommended LACP load balancing method for both bond interfaces is transmission hash policy
based on TCP/UDP port numbers (xmit_hash_policy layer3+4).
This NIC must be connected to an access switch in 10 GbE mode.

Note
The LACP configuration in 802.3ad mode on the server side must be supported by the
corresponding configuration of switching fabric. See Switching fabric capabilities for
details.

Seealso
Linux Ethernet Bonding Driver Documentation

Access networking
The top of the rack (ToR) switches provide connectivity to servers on physical and data-link
levels. They must provide support for LACP and other technologies used on the server side, for
example, 802.1q VLAN segmentation. Access layer switches are used in stacked pairs.
In MCP CPI reference architecture validation lab, the following 10 GbE switches were used as the
top of the rack (ToR) for PXE, Management Public, Storage, and Tenant networks in MCP:

• Dell Force10 S4810P 48x 10 GbE ports, 4x 40 GbE ports

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 18

https://www.kernel.org/doc/Documentation/networking/bonding.txt

Use this a reference when planning the hardware bill of materials for your installation of MCP.
The following diagram illustrates how a server is connected to the switching fabric and how the
fabric itself is configured.

Switching fabric capabilities
The following table summarizes requirements for the switching fabric capabilities:

Switch fabric capabilities summary

Name of requirement Description
LACP TCP/UDP hash
balance mode

Level 4 LACP hash balance mode is recommended to support
services that employ TCP sessions. This helps to avoid
fragmentation and asymmetry in traffic flows.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 19

Multihome server
connection support

There are two major options to support multihomed server
connections:

• Switch stacking
Stacked switches work as a single logical unit from
configuration and data path standpoint. This allows you to
configure IP default gateway on the logical stacked switch
to support multi-rack use case.

• Multipath Link Aggregation Groups
MLAG support is recommended to allow cross-switch
bonding across stacked ToR switches. Using MLAG allows
you to maintain and upgrade the switches separately
without network interruption for servers. In case of PXE
networks, the LACP fallback must be enabled on the switch
so that servers can PXE boot without having LACP
configured.

LAG/port-channel links The number of supported LAGs/port-channel links per switch must
be twice the number of ports. Take this parameter into account so
that you can create the required number of LAGs to accommodate
all servers connected to the switch.

Note
LACP configurations on access and server levels must be compatible with each other. In
general, it might require additional design and testing effort in every particular case,
depending on the models of switching hardware and the requirements to networking
performance.

Multi-cluster architecture

Note
The major limitation of the DriveTrain multi-cluster architecture as of MCP Build ID
2019.2.0 is that all clusters managed by a single instance of DriveTrain must have the
same version and must be updated simultaneously to the new release of MCP. Some LCM
operations on the clusters of earlier versions might not be possible. The only operation
supported in this case is update/upgrade operation.

Mirantis Cloud Platform (MCP) can manage multiple disparate clusters using the same DriveTrain
and infrastructure node installation. The following clusters are supported:

• OpenStack environments

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 20

• Kubernetes clusters support terminated since 2019.2.5

MCP provides the means to manage these sets of clusters using one DriveTrain installation over
the L3 network. The cloud operator can execute such operations as applying the global
configuration changes to a set of clusters or to an individual cluster, update cluster components,
such as OpenStack services, and so on.
Starting with MCP release 2019.2.0, the updated recommendation is to avoid using single model
structure to describe multiple clusters. Your cluster is more efficient and scalable if you describe
every cluster in a separate model structure, stored in separate Git repository. This way, every
cluster has dedicated Salt Master that uses a metadata model specific to that particular cluster.
It also makes it easier to manage models using a multi-cluster orchestrator external to Salt
Master.
A Jenkins deployment pipeline enables you to specify the URL and credentials of the Salt Master
API endpoint that will be called upon the execution of the pipeline. Use the following pipeline
parameters to designate the Salt Master service:

• SALT_MASTER_URL
• SALT_MASTER_CREDENTIALS

The targeted Salt Master node then distributes appropriate changes to targeted nodes.

Note
MAAS and StackLight LMA do not support multi-cluster environments. These components
are installed per cluster and used only for that cluster.

One of the most common use cases of a multi-cluster architecture is the installation of a staging
cluster next to a production one. The staging environment is managed by the same instance of
DriveTrain as the production cluster.
The instance of DriveTrain that manages multiple clusters should be installed separately from
managed clusters and have its own cluster model, not be included in staging or production
environment models.
The following diagram describes a high-level multi-cluster architecture:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 21

Staging environment
Mirantis recommends creating a staging environment for any production purposes. Thus, a
typical MCP installation should consist of at least two clusters of the same kind (OpenStack or
Kubernetes): for staging and production.
Mirantis recommends you install the staging environment first and reuse as much as possible of
the Reclass cluster model of the staging environment to deploy production environment(s).
Having a staging environment with a control plane topology that differs from the production
environment is considered impractical.
Consider installing a staging environment for your production environment if:

• You will run mission-critical workloads in your production environment.
• You plan to install more than one production environment in the same or similar topology.
• You plan to develop custom components or integrate an external service with MCP.

In any case, the staging environment provides you with a testing sandbox to test any changes in
configuration or versions of artifacts before you apply it to your production environment.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 22

Note
DriveTrain pipeline jobs allow you to select what Salt Master node should be called during
the particular build/run of the pipeline job. This allows you to target staging and
production environments separately. See more details in the Multi-cluster architecture
section.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 23

OpenStack cluster
MCP enables you to deploy one or multiple OpenStack environments to address the needs of
your data center.
Coupled together with the deployment automation, native logging, monitoring, and alerting
component, as well as with support for OpenContrail and Open vSwitch networking, an MCP
OpenStack environment represents a reliable, scalable, and flexible cloud solution that supports
numerous types of workloads and applications.

OpenStack cloud capabilities
The following capabilities are available to users of the MCP-based OpenStack clouds:

• Upload and manage virtual machine disk images to object storage using the OpenStack
Image (Glance) API.

• Assign storage, network, and other infrastructural resources to the virtual machines upfront
and at the runtime using the OpenStack Networking (Neutron) API.

• Boot and run virtual machines on a KVM hypervisor under the OpenStack management from
the uploaded images, or from block storage through the OpenStack Compute (Nova) API.

• Migrate virtual machines between hypervisors and their groups, with or without interruption
of the workload running on the virtual machine, depending on availability of a shared
storage for disk images. This ability is provided by the Compute API.

• Connect remote or local block storage resources to the virtual machines using the
OpenStack Block Storage (Cinder) API.

• Configure virtual load balancers through the OpenStack Load Balancing-as-a-Service
(Octavia) API.

• Configure DNS names for their virtual server instances through the DNS-as-a-Service
(Designate) API.

• Access all API endpoints of the OpenStack cloud over connections secured by SSL/TLS
protocols.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 24

OpenStack compact cloud
The Compact Cloud is an OpenStack-based reference architecture for MCP. It is designed to
provide a generic public cloud user experience to the cloud tenants in terms of available virtual
infrastructure capabilities and expectations. It features reduced control plane footprint, at the
cost of reduced maximum capacity.
The compact reference architecture is designed to support up to 500 virtual servers or 50
hypervisor hosts. In addition to the desirable number of hypervisors, 3 infrastructure physical
servers are required for the control plane. These 3 servers host the OpenStack virtualized
control plane (VCP), StackLight services, and virtual Neutron gateway nodes.

Note
Out of the box, the compact reference architecture supports only Neutron OVS networking
for OpenStack. DVR is enabled by default.
OpenContrail is not supported out of the box in the compact reference architecture.

The following diagram describes the distribution of VCP and other services throughout the
infrastructure nodes.

The following table describes the hardware nodes in the CPI reference architecture, roles
assigned to them, and the number of nodes of each type.

Physical servers for MCP

Node type Role name Number of servers

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 25

Infrastructure nodes (VCP) kvm 3
OpenStack compute nodes cmp up to 50
Staging infrastructure nodes kvm 3
Staging compute nodes cmp 2 - 5

The following table summarizes the VCP virtual machines mapped to physical servers.

Resource requirements per VCP and DriveTrain roles

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

ctl kvm01 kvm02 kvm03 3 8 32 100
msg kvm01 kvm02 kvm03 3 8 32 100
dbs kvm01 kvm02 kvm03 3 8 16 100
prx kvm02 kvm03 2 4 8 50
cfg kvm01 1 2 8 50
mon kvm01 kvm02 kvm03 3 4 16 500
mtr kvm01 kvm02 kvm03 3 4 32 1000
log kvm01 kvm02 kvm03 3 4 32 2000
cid kvm01 kvm02 kvm03 3 8 32 100
gtw kvm01 kvm02 kvm03 3 4 16 50
mdb kvm01 kvm02 kvm03 3 4 8 150
TOTAL 30 166 672 12450

Note

• The gtw VM should have four separate NICs for the following interfaces: dhcp,
primary, tenant, and external. It simplifies the host networking as you do not need to
pass VLANs to VMs.

• The prx VM should have an additional NIC for the proxy network.
• All other nodes should have two NICs for DHCP and primary networks.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 26

Seealso

• Control plane virtual machines for the details on the functions of nodes of each type.
• Hardware requirements for Cloud Provider Infrastructure for the reference hardware

configuration for each type of node.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 27

OpenStack Cloud Provider infrastructure
The Cloud Provider infrastructure (CPI) is an OpenStack-based reference architecture for MCP. It
is designed to provide a generic public cloud user experience to the cloud tenants in terms of
available virtual infrastructure capabilities and expectations.
The reference customer persona for the MCP CPI reference architecture is a Cloud Services
Provider, provider of a generic cloud service (public or private).
The CPI reference architecture is designed to support up to 2000 virtual servers or 150
hypervisor hosts. In addition to the desirable number of hypervisors, 9 infrastructure physical
servers are required for the control plane. These include 3 servers dedicated to StackLight LMA
services and 3 servers for the Neutron gateway nodes. The gateway nodes host virtual routers
that provide network connectivity to virtual servers in the cloud.

Note
Out of the box, the CPI reference architecture supports only Neutron OVS networking for
OpenStack. DVR is enabled by default.
OpenContrail is not supported out of the box in the CPI reference architecture.

The following table describes the hardware nodes in the CPI reference architecture, roles
assigned to them and the number of nodes of each type.

Physical servers for MCP

Node type Role name Number of servers
Infrastructure nodes (VCP) kvm 3
Infrastructure nodes
(StackLight LMA)

kvm 3

Tenant network gateway
nodes

gtw 3

OpenStack compute nodes cmp 50 - 150
Staging infrastructure nodes kvm 3
Staging infrastructure nodes
(StackLight LMA)

kvm 3

Staging tenant network
gateway nodes

gtw 3

Staging compute nodes cmp 2 - 5

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 28

Seealso

• Control plane virtual machines for the details on the functions of nodes of each type.
• Hardware requirements for Cloud Provider Infrastructure for the reference hardware

configuration for each type of node.
• Virtualized control plane layout for the details on layout of control plane services

across physical infrastructure servers.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 29

OpenStack large cloud
The Large Cloud is an OpenStack-based reference architecture for MCP. It is designed to provide
a generic public cloud user experience to the cloud tenants in terms of available virtual
infrastructure capabilities and expectations.
The large reference architecture is designed to support up to 5000 virtual servers or 500
hypervisor hosts. In addition to the desirable number of hypervisors, 18 infrastructure physical
servers are required for the control plane. This number includes 9 servers that host OpenStack
virtualized control plane (VCP), 6 servers dedicated to the StackLight services, and 3 servers for
the OpenContrail control plane.
The following diagram describes the distribution of VCP and other services throughout the
infrastructure nodes.

The following table describes the hardware nodes in the CPI reference architecture, roles
assigned to them, and the number of nodes of each type.

Physical server roles and quantities

Node type Role name Number of
servers

Infrastructure nodes (VCP) kvm 9
Infrastructure nodes (OpenContrail) kvm 3
Monitoring nodes (StackLight LMA) mon 3
Infrastructure nodes (StackLight LMA) kvm 3

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 30

OpenStack compute nodes cmp 200 - 500
Staging infrastructure nodes kvm 18
Staging OpenStack compute nodes cmp 2 - 5

The following table summarizes the VCP virtual machines mapped to physical servers.

Resource requirements per VCP role

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

ctl kvm02 kvm03 kvm04 kvm05
kvm06

5 24 128 100

dbs kvm04 kvm05 kvm06 3 24 64 1000
msg kvm07 kvm08 kvm09 3 32 196 100
prx kvm07 kvm08 2 8 32 100
mdb kvm07 kvm08 kvm09 3 8 32 150
TOTAL 16 328 1580 4450

Resource requirements per DriveTrain role

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

cfg kvm01 1 8 32 50
cid kvm01 kvm02 kvm03 3 4 32 500
TOTAL 4 20 128 1550

Resource requirements per OpenContrail role

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

ntw kvm10 kvm11 kvm12 3 16 64 100
nal kvm10 kvm11 kvm12 3 24 128 2000
TOTAL 6 120 576 6300

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 31

Resource requirements per Ceph role

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

cmn kvm01 kvm02 kvm03 3 16 32 100
rgw kvm01 kvm02 kvm03 3 16 32 50
TOTAL 6 96 192 450

Resource requirements per StackLight role

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

mon kvm16 kvm17 kvm18 3 24 256 1000 8

mtr kvm13 kvm14 kvm15 3 16 196 3000 8

log kvm13 kvm14 kvm15 3 16 64 9 5000 10

TOTAL 9 192 1548 27000

8(1, 2) The required disk space per instance depends on the Prometheus retention
policy, which by default is 5 days for mon nodes and 180 days for mtr nodes.

9 The Elasticsearch heap size must not exceed 32 GB. For details, see Limiting
memory usage. To limit the heap size, see MCP Operations Guide: Configure
Elasticsearch.

10 The required disk space per instance depends on the Elasticsearch retention
policy, which is 31 days by default.

Note

• The prx VM should have an additional NIC for the Proxy network.
• All other nodes should have two NICs for DHCP and Primary networks.

Seealso

• Control plane virtual machines for the details on the functions of nodes of each type

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 32

https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-stacklight/configure-logging-system-components/configure-elasticsearch.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-stacklight/configure-logging-system-components/configure-elasticsearch.html

• Hardware requirements for Cloud Provider Infrastructure for the reference hardware
configuration for each type of node.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 33

Virtualized control plane
The MCP virtualized control plane (VCP) provides all services and components required to
manage the virual infrastructure of the cloud platform.

Virtualized control plane overview
Virtualized control plane (VCP) consists of the services required to manage workloads and
respond to API calls. VCP is the heart and brain of your OpenStack deployment that controls all
logic responsible for managing OpenStack-based virtual infrastructure and provide the
OpenStack cloud capabilities.
For the sake of clarity, we split the OpenStack VCP services into the core and extension services.
The OpenStack VCP core services are dealing with the virtual infrastructure resources, sush as
virtual machines, images, networks, and so on. From the layout standpoint, one instance of each
core service runs in the combined control plane virtual node called ctl in terms of the metadata
model.
The OpenStack VCP extension services enable management of the resources consumed by the
workloads indrectly, such as DNS names, virtual load balancers, and so on. Unlike the core
services, the extensions typically run on the dedicated virtual nodes. See the Control plane
virtual machines for details.

Note
Core and extension services are considered mandatory in the Mirantis OpenStack
reference architecture.

Seealso

• OpenStack VCP Core services
• OpenStack VCP extension services
• OpenStack compact cloud

OpenStack VCP Core services
The following table summarizes the core capabilities provided by MCP Cloud Provider
Infrastructure as APIs, services that provide specific parts of that API, the default and optional
backends used by these services, where applicable.

OpenStack core services

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 34

API type Capabilities provided Service Default
back-end

Optional
back-ends

Compute Boot and run virtual
machines

Nova Linux KVM N/A

Identity Control ownership,
access and quota for
the virtual resources

Keystone N/A N/A

Image Create and manage VM
disk images and
snapshots

Glance Ceph GlusterFS

Networking Create, manage and
connect virtual overlay
networks for the VMs

Neutron OpenVSwitch OpenContrail

Orchestration Create and manage
templates and
instances of virtual
infrastructures

Heat N/A N/A

Dashboard Access dashboard UI for
managing the virtual
resources

Horizon N/A N/A

Block storage Create, manage and
connect block storage
resources to the VMs

Cinder Ceph LVM

Object storage Create, download and
manage storage
objects

Ceph RADOS
Gateway

Ceph N/A

OpenStack VCP extension services
The following table summarizes the extension capabilities provided by MCP Cloud Provider
Infrastructure as APIs, services that provide these APIs, the default and optional backends used
by these services, where applicable.

OpenStack extensions services

API Type Capabilities provided Service Default
back-end

Optional
back-ends

Load Balancer Create, configure and
manage virtual load
balancers for tenant
workloads

Octavia HAProxy N/A

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 35

Domain Name
Service

Create and manage
DNS names for tenant
workloads

Designate PowerDNS N/A

Secrets
management

Store and manage
certificates and other
types of secrets for
tenant workloads

Barbican DogTag N/A

Telemetry Collect, store, and
expose usage and
utilization data for the
virtual resources

• Gnocchi
• Panko
• Aodh

N/A N/A

OpenStack VCP extra services

Caution!

Manila deprecation notice
In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for
deprecation. The corresponding capabilities are still available, although not further
enhanced.
Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will
no longer be supported by Mirantis. For those existing customers who have the Manila
functionality explicitly included in the scope of their contracts, Mirantis will continue to
fulfill the corresponding support obligations.

The extra services provide additional capabilities supported by MCP, but not included in the
reference architecture. See the supported versions of these components in Release Notes:
Components Versions.
The following table summarizes the extra capabilities provided by MCP OpenStack platform as
APIs, services that provide these APIs, the default and optional backends used by these services,
where applicable.

OpenStack Extensions services

API type Capabilities provided Service Default
backend

Optional
backends

Shared
Storage

Create, configure, and
manage shared storage
folders for tenant
workloads

Manila NFS N/A

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 36

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/components_versions.html
https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/components_versions.html

Bare metal Provision bare-metal
servers as virtual
instances through
OpenStack API

Ironic 11 N/A N/A

11 Starting from the 2019.2.6 maintenance update, Ironic is officially supported
and integrated into MCP. Before the 2019.2.6 maintenance update, Ironic is
available as technical preview and can be used for testing and evaluation
purposes only.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 37

Manila storage networking planning

Caution!

Manila deprecation notice
In the MCP 2019.2.7 update, the OpenStack Manila component is being considered for
deprecation. The corresponding capabilities are still available, although not further
enhanced.
Starting with the 2019.2.11 maintenance update, the OpenStack Manila component will
no longer be supported by Mirantis. For those existing customers who have the Manila
functionality explicitly included in the scope of their contracts, Mirantis will continue to
fulfill the corresponding support obligations.

Since OpenStack Manila is a share-as-a-service component, it requires network to be configured
properly to reach shares from inside virtual machines. The networking approach heavily varies
depending on an environment architecture and Manila backend. Some scenarios use the L2
connectivity with network interfaces for share servers created on a tenant-owned subnet.
Therefore, virtual machines have direct connectivity to the storage. Such configuration requires
a driver that can create share servers for each tenant.

Note
For the list of share drivers and their capabilities supported in OpenStack, see Manila
share features support mapping in the official OpenStack documentation.

In some cases, the Manila share server runs on a standalone node that requires a separate
network. Such approach requires the L3 connectivity through a router between the floating
network and the Manila share server as illustrated on the diagram.

Note
The diagram depicts a common share server configuration.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 38

https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html
https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

Ironic planning
MCP enables you to provision the OpenStack environment workloads (instances) to bare metal
servers using Ironic. Ironic provisions workloads to bare metal servers through the Compute
service (Nova) in almost the same way the virtual machines are provisioned.

Note
Starting from the 2019.2.6 maintenance update, Ironic is officially supported and
integrated into MCP. Before the 2019.2.6 maintenance update, Ironic is available as
technical preview and can be used for testing and evaluation purposes only.

Ironic applies to a number of use cases that include:

• An OpenStack environment contains the workloads that can not be run on virtual machines
due to, for example, legacy software installed.

• An OpenStack environment contains the workloads that require high performance as well as
no virtualization overhead.

Ironic components
Ironic consists of two main components: ironic-api and ironic-conductor. Additionally, it requires
several auxiliary services for ironic-conductor including TFTP and HTTP servers. To enable the
Compute service users to provision their workloads on bare metal servers, the nova-compute
service is configured to use the ironic virt-driver.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 39

Ironic components

Component Description
ironic-conductor Performs actual node provisioning.

Due to security and performance considerations, it is deployed on
separate bmt* VMs on MCP KVM nodes along with its auxiliary
services.

ironic-api Due to security considerations, two pools of ironic-api services are
deployed with different access policies:

• The public pool processes requests from other services and
users. It is deployed on ctl* nodes.
REST API endpoints used by bare metal nodes are disabled for
services in this pool.

• The deploy pool processes requests from nodes during node
provisioning or cleaning. It is deployed on bmt* nodes.
The REST API endpoints enabled for services in this pool are
those used by bare metal nodes during provisioning.

nova-compute Separate pool of nova-compute services with ironic virt-driver deploys
on bmt* nodes.

Ironic network logic
The following diagram displays the Ironic network logic.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 40

MCP Ironic supported features and known limitations
This section lists the Ironic drivers and features with known limitations that MCP DriveTrain
supports. The driver or feature support in this section stands for the ability of MCP DriveTrain to
deploy and configure the features by means of the Ironic Salt formula through the cluster model.
Supported Ironic drivers in MCP include:

• The ipmi hardware type with the iscsi deploy interface (the pxe_ipmitool classic driver)
• The ilo hardware type with the iscsi deploy interface (the pxe_ilo classic driver)

Note
Ironic provides an ability to configure both classic drivers and new drivers. The latter
drivers are also known as hardware types.

MCP DriveTrain does not support any other than listed above classic drivers and hardware types
with other interfaces.
The following table includes the Ironic features and specifies the support status for these
features in MCP. The status of any of the items included in this table may change in the future
MCP release versions.

MCP Ironic supported features and known limitations

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 41

Ironic feature Support status for
MCP Ironic

The integration of Cinder that includes the functionality to boot from
an iSCSI back-end volume.

Supported

The PXE and iPXE boot Supported, iPXE by
default

The Ironic integration with the Fluentd logging Supported since
Queens

The configuration of CORS for ironic-api Supported since
Queens

Multitenancy support Supported
The automated cleanup enablement and setting priorities for the
default cleaning steps

Supported

The ability to fine-tune the Ironic conductor performance Not supported
The configuration of the console support for the bare metal nodes Supported since the

MCP 2019.2.4
update, shellinabox
by default

The ironic-inspector and Ironic integration with ironic-inspector Not supported
The configuration of a custom path to the iPXE boot script Not supported
Compatibility with OpenContrail Not supported

MCP does not provide pre-built images for RAMDisk deployment to be used by Ironic during the
node provisioning, as well as end-user images to be deployed on bare metal nodes due to high
dependency from the hardware specifics.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 42

Virtualized control plane layout
The following diagram describes the distribution of OpenStack and other services throughout the
infrastructure nodes. For detailed description of the services, see Virtualized control plane.

The following table summarizes the VCP virtual machines mapped to physical servers. See
Control plane virtual machines for details.

Resource requirements per VCP role

Virtual
server
roles

Physical servers # of inst
ances

CPU
vCores

per
instance

Memory
(GB) per
instance

Disk
space

(GB) per
instance

ctl kvm01 kvm02 kvm03 3 16 64 100
kmn kvm01 kvm02 kvm03 3 4 8 50
dns kvm02 kvm03 2 2 4 50

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 43

dbs kvm01 kvm02 kvm03 3 8 32 100
msg kvm01 kvm02 kvm03 3 16 64 100
prx kvm02 kvm03 2 4 16 300
cfg kvm01 1 8 16 50
cid kvm01 kvm02 kvm03 3 8 32 200
cmn kvm01 kvm02 kvm03 3 4 8 50
rgw kvm01 kvm02 kvm03 3 4 16 50
apt kvm01 1 4 16 500
mtr kvm04 kvm05 kvm06 3 12 96 1500
log kvm04 kvm05 kvm06 3 16 48 3000
mon kvm04 kvm05 kvm06 3 12 64 1000
mdb kvm04 kvm05 kvm06 3 8 32 500

Seealso

• Control plane virtual machines
• Virtualized control plane

High availability in OpenStack
The Virtual Control Plane (VCP) services in the MCP OpenStack are highly available and work in
active/active or active/standby modes to enable service continuity after a single node failure. An
OpenStack environment contains both stateless and stateful services. Therefore, the MCP
OpenStack handles them in a different way to achieve high availability (HA).

• OpenStack microservices
To make the OpenStack stateless services, such as nova-api, nova-conductor,
glance-api, keystone-api, neutron-api, and nova-scheduler sustainable against a single
node failure, HAProxy load balancer (two or more instances) is used for failover. MCP
runs multiple instances of each service distributed between physical machines to
separate the failure domains.

• API availability
MCP OpenStack ensures HA for the stateless API microservices in an active/active
configuration using the HAProxy with Keepalived. HAProxy provides access to the
OpenStack API endpoint by redirecting the requests to active instances of an
OpenStack service in a round-robin fashion. It sends API traffic to the available
backends and prevents the traffic from going to the unavailable nodes. Keepalived
daemon provides VIP failover for the HAProxy server.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 44

Note
Optionally, you can manually configure SSL termination on the HAProxy, so that
the traffic to OpenStack services is mirrored to go for inspection in a security
domain.

• Database availability
In MCP OpenStack, MySQL database server runs in cluster with synchronous data
replication between the instances of MySQL server. The cluster is managed by Galera.
Galera creates and runs MySQL cluster of three instances of the database server. All
servers in the cluster are active. HAProxy redirects all writing requests to just one server
at any time and handles failovers.

• Message bus availability
RabbitMQ server provides messaging bus for OpenStack services. In MCP reference
configuration, RabbitMQ is configured with ha-mode policy to run a cluster in
active/active mode. Notification queues are mirrored across the cluster. Messaging
queues are not mirrored by default, but are accessible from any node in the cluster.

• OpenStack dashboard
Two instances of proxy node are deployed. They run OpenStack dashboard (Horizon),
and Nginx based reverse proxy that exposes OpenStack API endpoints.

The following diagram describes the control flow in an HA OpenStack environment:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 45

Secure OpenStack API
The Transport Layer Security (TLS) cryptographic protocol enables you to provide a secured
encrypted communication for the client-server OpenStack applications as well as for the
RabbitMQ and MySQL backends of an MCP OpenStack environment. TLS protects the
communications in your MCP cluster from trespassing and eavesdropping.

Note
In the Mirantis Reference Architecture, all traffic between OpenStack API endpoints and
clients is encrypted by default, including both external and internal endpoints.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 46

Seealso

• MCP Deployment Guide: Enable TLS support
• Introduction to TLS and SSL in the OpenStack Security Guide

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 47

https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/deploy-mcp-cluster-manually/deploy-openstack-env-manually/enable-tls-support.html
https://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html

Compute nodes planning
Determining the appropriate hardware for the compute nodes greatly depends on the workloads,
number of virtual machines, and types of applications that you plan to run on the nodes.
Typically, the engagement of a Mirantis cloud architect is required to properly plan the capacity
for your cloud.
That said, it is essential to understand your cloud capacity utilization tendencies and patterns to
plan for expansion accordingly. On one hand, planning expansion too aggressively may result in
underutilization. Underestimating expansion trends, on the other hand, threatens
oversubscription and eventual performance degradation.
Mirantis provides a spreadsheet with the compute node calculation. You need to fill the following
parameters in the spreadsheet:

Compute nodes planning

Parameter Description
Overhead
components

Describe components that put additional overhead on system
resources, such as DVR/vRouter and Hypervisor. The parameters
specified in the spreadsheet represent standard workloads. The DVR /
vRouter parameters represent a Compute node with 2 x 10 Gbps
NICs. If you use a larger capacity network interfaces, such as 40 Gbps,
this number may increase. For most deployments, the hypervisor
overhead parameters equal represented numbers.

HW Components Compute profile represents the hardware specification that you
require for the specified number of virtual machines and the selected
flavor. The adjusted version of the compute profile represents the
hardware specification after correction to overhead components.

Oversubscription
ratio

Defines the amount of virtual resources to allocate for a single
physical resource entity. Oversubscription ratio highly depends on the
workloads that you plan to run in your cloud. For example, Mirantis
recommends to allocate 8 vCPU per 1 hyper-thread CPU, as well as
1:1 ratio for both memory and disk for standard workloads, such as
web application development environments. If you plan to run higher
CPU utilization workloads, you may need to decrease CPU ratio down
to 1:1.

Flavor definitions Defines a virtual machine flavor that you plan to use in your
deployment. The flavor depends on the workloads that you plan to
run. In the spreadsheet, the OpenStack medium virtual machine is
provided as an example.

Flavor totals Defines the final hardware requirements based on specified
parameters. Depending on the number and the virtual machine flavor,
you get the number of compute nodes (numHosts) with the hardware
characteristics.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 48

Resource utilization
per compute node

The resource utilization parameter defines the percentage of
memory, processing, and storage resource utilization on each
compute node. Mirantis recommends that vCPU, vMEM, and vDISK are
utilized at least at 50 %, so that your compute nodes are properly
balanced. If your calculation results in less than 50 % utilization,
adjust the numbers to use the resources more efficiently.

Seealso
Download Compute nodes calculation

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 49

OpenStack network architecture
OpenStack Networking manages virtual networks that connect virtual server instances to each
other and to external network. Also, OpenStack networking handles network configuration of
instances, virtual firewalls, and floating IP addresses.
Tenant virtual networks are overlay networks on top of physical and logical infrastructure of a
data center network. Both the overlay network creation and host network configuration depend
on the backend that you use.
MCP supports the following network technologies as back ends for OpenStack Networking:

• Neutron Open vSwitch (OVS)
• OpenContrail

Selecting a network technology
Neutron Open vSwitch networking is the default for OpenStack networking in the MCP CPI
reference architecture. The second supported option is OpenContrail SDN networking.
The following table compares the two technologies and defines use cases for both.

OpenContrail vs Neutron OVS

Neutron OVS OpenContrail
Neutron with Open vSwitch is the default
networking for OpenStack. It is supported by
diverse community of the OpenStack
developers.
Neutron provides basic networking including
the IP addresses, IP routing, security groups,
and floating IP addresses management. It
also provides virtual load balancer
capabilities through LBaaS API (Octavia) to
the cloud users. Neutron uses VXLAN
encapsulation for tenant overlay networks.
Neutron supports distributed virtual router
(DVR) for east-west and network node for
north-bound traffic originating from tenant
virtual servers. North-bound traffic reaches its
destinations using address translation (SNAT)
on the network (gateway) nodes.

OpenContrail is an open source SDN product
backed by Juniper and supported by
community of developers.
OpenContrail provides both basic networking,
such as IP addresses management, security
groups, floating IP addresses, and advanced
networking functions, including DPDK
network virtualization and SR-IOV.
OpenContrail replaces standard Linux
networking stack with its own vrouter agent
that has complete control over the data plane
traffic of OpenStack virtual servers.
The main use case for OpenContrail is
advanced overlay network configurations that
heavily rely on Service Function Chaining and
SR-IOV. It is generally recommended to cloud
operators that run Telco workloads in their
clouds.

Seealso
OpenContrail

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 50

Types of networks
The following diagram provides an overview of the underlay networks in an OpenStack
environment:

An OpenStack environment typically uses the following types of networks:

• Underlay networks for OpenStack that are required to build network infrastructure and
related components. See details on the physical network infrastructure for CPI reference
architecture in Networking.

• PXE / Management
This network is used by SaltStack and MAAS to serve deployment and provisioning
traffic, as well as to communicate with nodes after deployment. After deploying an
OpenStack environment, this network runs low traffic. Therefore, a dedicated 1 Gbit
network interface is sufficient. The size of the network also depends on the number of
hosts managed by MAAS and SaltStack.

• Public
Virtual machines access the Internet through Public network. Public network provides
connectivity to the globally routed address space for VMs. In addition, Public network
provides a neighboring address range for floating IPs that are assigned to individual VM
instances by the project administrator.

• Proxy
This network is used for network traffic created by Horizon and for OpenStack API
access. The proxy network requires routing. Typically, two proxy nodes with Keepalived
VIPs are present in this network, therefore, the /29 network is sufficient. In some use
cases, you can use Proxy network as Public network.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 51

• Control
This network is used for internal communication between the components of the
OpenStack environment. All nodes are connected to this network including the VCP
virtual machines and KVM nodes. OpenStack control services communicate through the
control network. This network requires routing.

• Data
This network is used to build a network overlay. All tenant networks, including floating
IP, fixed with RT, and private networks, are carried over this underlay network. VxLAN
encapsulation is used by default in CPI reference architecture.
Data network does not require external routing by default. Routing for tenant networks
is handled by Neutron gateway nodes. Routing for Data underlay network may be
required if you want to access your workloads from corporate network directly (not via
Floating IP addresses). In this case, external routers are required that are not managed
by MCP.

• Storage access (optional)
This network is used to access Ceph storage servers (OSD nodes). The network does
not need to be accessible from outside the cloud environment. However, Mirantis
recommends that you reserve a dedicated and redundant 10 Gbit network connection
to ensure low latency and fast access to the block storage volumes. You can configure
this network with routing for L3 connectivity or without routing. If you set this network
without routing, you must ensure additional L2 connectivity to nodes that use Ceph.

• Storage replication (optional)
This network is used for copying data between OSD nodes in a Ceph cluster. Does not
require access from outside the OpenStack environment. However, Mirantis
recommends reserving a dedicated and redundant 10 Gbit network connection to
accommodation high replication traffic. Use routing only if rack-level L2 boundary is
required or if you want to configure smaller broadcast domains (subnets).

• Virtual networks inside OpenStack
Virtual networks inside OpenStack include virtual public and internal networks. Virtual public
network connects to the underlay public network. Virtual internal networks exist within the
underlay data network. Typically, you need multiple virtual networks of both types to
address the requirements of your workloads.

In the reference architecture for Cloud Provider Infrastructure, isolated virtual/physical networks
must be configured for PXE and Proxy traffic. For PXE network, 1 GbE interface is required. For
Proxy, Data and Control network, CPI uses 10 GbE interfaces bonded together and split into
VLANs, one VLAN per network. For Storage networks CPI requires a dedicated pair of 10 GbE
interfaces bonded together for increased performance and resiliency. Storage access and
replication networks may be divided into separate VLANs on top of the dedicated bond interface.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 52

Seealso
Networking

MCP external endpoints
MCP exposes a number of services through endpoints terminated on a reverse proxy server.
MCP uses nginx as a reverse proxy server. The server listens on a virtual IP address from Public
network (see types-networks).
The following table summarizes the endpoints and port numbers used by services in MCP CPI
referenece architecture.

MCP endpoints and ports

Component Service Endpoint Port
OpenStack Dashboard https 443

Keystone https 5000
Neutron https 9696
Nova https 8774
Nova Placement https 8778
Ceilometer https 8777
Cinder https 8776
Glance https 9292
Heat CFN https 8000
Heat CloudWatch https 8003
Heat https 8004
NoVNC https 6080
Octavia https 9876
Barbican https 9311
Designate https 9001
Aodh https 8042
Gnocci https 8041
Panko https 8977
Dashboard 12 http 80

Ceph RadosGW https 8080

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 53

StackLight Alerta https 15017
Grafana https 8084
Kibana https 5601
Alertmanager https 15011
Prometheus https 15010

DriveTrain Gerrit https 8070
jenkins https 8081

12 Redirected to HTTPS, port 443.

Storage traffic
Storage traffic flows through dedicated storage networks that Mirantis recommends to configure
if you use Ceph.
The following diagram displays the storage traffic flow for Ceph RBD, replication, and RadosGW.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 54

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 55

Neutron OVS networking
OpenStack Networking with OVS is used by default and is the only supported networking mode
in the reference architecture for the CPI use case.
Neutron configuration for the CPI use case enables distributed virtual router (DVR) by default.
Overlay networks are created using the VxLAN encapsulation. Access to the external networks is
provided by source network address translation (SNAT) working on dedicated network nodes or
gateway nodes.
Neutron supports external access to the virtual server instances in the cloud through the floating
IP assigned to the virtual servers through the networking API.
Neutron OVS requires setting up of a specific network node, which is sometimes called gateway,
that handles the routing across the internal networks, as well as the outbound routing.

Limitations
Due to a limitation in the OpenStack Networking service, the Distributed Virtual Router (DVR) in
combination with L3 HA is not stable enough and affects the SNAT traffic. Therefore, Mirantis
does not recommend such a configuration for production deployments.
Instead of L3 HA, the allow_automatic_l3agent_failover option is enabled by default in
neutron.conf for the Neutron OVS with DVR deployments in MCP. This option enables automatic
rescheduling of a failed L3 agent routers to an online L3 agent on a different network node.

Node configuration
For all Neutron OVS use cases, configure four VLANs and four IP addresses in separate networks
on all compute and network nodes. You will also need two VLAN ranges for tenant traffic and
external VLAN traffic.
The following table describes a node network configuration for a Neutron OVS-based MCP
OpenStack cluster:

Neutron OVS node network configuration

Interface/Bridge Description Interfaces IP
eth0 PXE Boot traffic - Dynamic
br-mgm OpenStack and other

management traffic
bond0.<managem
ent_VLAN>

Static

br-prv Tenant VLAN traffic bond0 Static
br-mesh Tenant overlay traffic

(VXLAN)
bond0.<tenant_VL
AN>

Static

br-floating External VLAN traffic bond0.<external_
VLAN> (or VLAN
range)

No IP

br-stor Storage traffic bond0.<storage_V
LAN>

No IP

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 56

bond0 Main bond eth1, eth2 No IP

Depending on hardware capabilities, you can separate bonds for the control plane and data
plane.
Depending on your use case, configure your network nodes to use the VLAN or VXLAN-based
tenant network.

Network node configuration for VXLAN tenant networks
In the VXLAN-based tenant networks, the network node terminates VXLAN mesh tunnels and
sends traffic to external provider VLAN networks. Therefore, all tagged interfaces must be
configured directly in Neutron OVS as internal ports without Linux bridges. Bond0 is added into
br-floating, which is mapped as physnet1 into the Neutron provider networks. br-mgm and
br-mesh are Neutron OVS internal ports with tags and IP addresses. As there is no need to
handle storage traffic on the network nodes, all the sub-interfaces can be created in Neutron
OVS. This also allows for the creation of VLAN providers through the Neutron API.
The following diagram displays the network node configuration for the use case with Neutron
VXLAN tenant networks and external access configured on the network node only.

Network node configuration for VLAN tenant networks
In the VLAN-based tenant networks, the network node terminates private VLANs and sends
traffic to the external provider of VLAN networks. Therefore, all tagged interfaces must be
configured directly in Neutron OVS as internal ports without Linux bridges. Bond0 is added into
br-floating, which is mapped as physnet1 into the Neutron provider networks. br-floating is
patched with br-prv which is mapped as physnet2 for VLAN tenant network traffic. br-mgm is an
OVS internal port with a tag and an IP address. br-prv is the Neutron OVS bridge which is
connected to br-floating through the patch interface. As storage traffic handling on the network
nodes is not required, all the sub-interfaces can be created in Neutron OVS which enables
creation of VLAN providers through the Neutron API.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 57

The following diagram displays the network node configuration for the use case with Neutron
VLAN tenant networks and external access configured on the network node only.

VCP hosts networking
Each physical server that hosts a KVM on which the Virtualized Control Plane (VCP) services run
must have the following network configuration:

VCP network configuration

Bridge Description Interfaces IP
br-pxe PXE Boot traffic eth0 Dynamic
br-bond0 Tenant internal and external traffic bond0

(eth1/eth2)
No IP

br-mgm OpenStack and other management
traffic

bond0.<manage
ment_VLAN>

Static

br-prx Proxy traffic bond0.<proxy_V
LAN>

No IP

Neutron VXLAN tenant networks with network nodes for SNAT (DVR for all)
If you configure your network with Neutron OVS VXLAN tenant networks with network nodes for
SNAT and Distributed Virtual Routers (DVR) on the compute nodes, network nodes perform SNAT
and routing between tenant and public networks. The compute nodes running DVRs perform
routing between tenant networks, as well as routing to public networks in cases when public
networks (provider, externally routed) are exposed or Floating IP addresses are used.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 58

The following diagram displays internal and external traffic flow.

The internal traffic from one tenant virtual machine located on the virtual Internal network 1
goes to another virtual machine located in the Internal network 2 through the DVRs on the
compute nodes. The external traffic (SNAT) from a virtual machine goes through the Internal
network 1 and the DVR on the compute node to the virtual router on the network node and
through the Public network to the outside network. The external routable traffic from a virtual
machine on the compute nodes goes through the Internal network 1 and the DVR on the
compute node through the Control or Public network to the outside network.
Traffic flow examples:

• A virtual machine without a floating IP address sends traffic to a destination outside the
Public network (N-S). The Internal network 1 is connected to a public network through the
Neutron router. The virtual machine (VM) is connected to the Internal network 1.

1. The VM sends traffic through the virtual router to the network node.
2. The network node performs SNAT, de-encapsulates and forwards traffic to the public

network’s external gateway router.
3. Return path same.

• A virtual machine with a floating IP address sends traffic to a destination outside the Public
network (N-S). The compute node with a DVR hosting the VM is connected to a public
network. An Internal network 1 is connected to the external network through the Neutron
router. The VM is connected to the Internal network 1.

1. The VM sends traffic through the compute node DVR to a public network (egress).
2. The compute node DVR performs SNAT, de-encapsulates and forwards traffic to the

public network’s external gateway router.
3. Return path (ingress) same (DNAT).

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 59

• A virtual machine on an internal (private, tenant) network sends traffic to a destination IP
address on a public (provider, externally routed) network (E-W). The compute node with
DVR hosting the VM is connected to the provider network. The Internal network 1 is
connected to the provider network through the Neutron router. The VM is connected to the
Internal network 1.

1. The VM sends traffic through the compute node DVR to a destination IP on a public
network.

2. The compute node DVR de-encapsulates and forwards traffic to a public network (no
NAT).

3. Return path same.
• A virtual machine (VM1) sends traffic to another VM (VM2) located on separate host(E-W).

The Internal network 1 is connected to the Internal network 2 through the Neutron router.
The (VM1) is connected to the Internal network 1 and the VM2 is connected to the Internal
network 2.

1. The VM1 sends traffic to the VM2 through the compute node DVR.
2. The DVR on the compute node hosting VM1 forwards encapsulated traffic to the DVR on

the compute node hosting VM2.
3. Return path same.

The compute nodes can access the external network, therefore, there is the OVS bridge called
br-floating. All Open vSwitch bridges are automatically created by the Neutron OVS agent. For a
highly-available production environment, network interface bonding is required. The separation
of the traffic types is done by the bonded tagged sub-interfaces, such as bond.x for the
virtualized control plane traffic (management IP), bond.y for the data plane bridge (br-mesh)
that provides VTEP for OVS, bond.z for storage, and others. The IP address of br-mesh is used as
a local IP in the openvswitch.ini configuration file for tunneling.
The following diagram displays the compute nodes configuration for the use case with Neutron
VXLAN tenant networks with SNAT on the network nodes and external access on the compute
and network nodes.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 60

Seealso
Network node configuration for VXLAN tenant networks

Plan the Domain Name System
MCP leverages the OpenStack Domain Name System as a Service component called Designate
to provide DNS with integrated Keystone authentication for OpenStack environments. Designate
uses the Galera MySQL cluster as the distributed database to provide a mapping of IP addresses
to domain names and hosts to access the Internet.
Designate uses RESTful API for creating, updating, and deleting DNS zones and records of
OpenStack environments. Designate integrates Nova and Neutron notifications for
auto-generated records as well as uses different underlying DNS servers including BIND9 and
PowerDNS that are supported by MCP.
Designate includes the following components:

Designate components

Component Description
designate-api Processes API requests by sending them to designate-central using

the Remote Procedure Call (RPC) mechanism.
designate-central Handles RPC requests using message queueing, coordinates

persistent storage, and applies business logic to data from
designate-api. Storage is provided using the SQLAlchemy plugin
supporting MySQL.

designate-worker Runs the zone create, zone update, and zone delete tasks as well as
tasks from designate-producer.

designate-producer Manages periodic Designate tasks.
designate-pool-mana
ger

(Optional) Manages the states of the DNS servers that are handled by
Designate.

designate-zone-mana
ger

(Optional) Handles all periodic tasks of the zone shard that
designate-zone-manager is responsible for.

designate-mdns Pushes the DNS zone information to the customer-facing DNS servers.
Can also pull information about the DNS zones hosted outside of the
Designate infrastructure.

designate-sink Consumes the Nova and Neutron events and notifications to produce
auto-generated records that are determined by custom notification
handlers.

Backend (BIND9 or
PowerDNS)

Represents your existing DNS servers or DNS servers deployed on
separate VMs of the MCP infrastructure nodes.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 61

All components except the backend can run on the MCP Virtualized Control Plane (VCP) as a part
of the OpenStack API.

Seealso

• Designate OpenStack documentation
• Designate architecture with the Pool Manager role
• Designate architecture with the Worker role

Plan load balancing with OpenStack Octavia
MCP enables you to use the OpenStack Octavia service coupled with the Neutron LBaaS driver
version 2 to provide advanced load balancing in your OpenStack environment. Octavia acts as a
back-end driver for Neutron LBaaS, therefore, all networking requests are handled by the
Octavia API. The main advantage of Octavia comparing to just using the Neutron LBaaS driver is
that Octavia provides easy on-demand scaling of load balancing services, what makes it an
enterprise-class solution.
One of the fundamental components of Octavia is called amphora, a specific entity that can be a
virtual machine, a container, or a bare-metal server, that Octavia uses to deliver workload load
balancing services. Currently, only virtual machines are supported.
Octavia makes use of the following OpenStack projects that should be set up on your production
OpenStack environment:

• Nova
• Neutron
• Glance
• Keystone
• RabbitMQ
• MySQL
• Barbican (if TLS support is required)

Octavia API services run on the OpenStack controller nodes. These services can be installed as a
cluster or single service. The Octavia Manager services that are Octavia Worker, Octavia Health
Monitor, and Octavia Housekeeping run on the gateway node. The clusterization of the Octavia
Manager services is currently available as technical preview only.
The certificates that are used for connection to amphora are created on the Salt Master node
and then loaded on the gtw nodes. If required, you can move the certificates that were originally
created on the gtw01 node to the Salt Master node. For details, see: MCP Deployment Guide.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 62

https://docs.openstack.org/developer/designate
https://docs.openstack.org/designate/ocata/architecture.html
https://docs.openstack.org/designate/pike/contributor/architecture.html
https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/advanced-config/configure-octavia/move-certs-octavia.html

Caution!

Octavia works with Neutron OVS as a network solution only. OpenContrail is not
supported.

Seealso

• OpenStack Octavia documentation
• MCP Deployment Guide: Configure load balancing with OpenStack Octavia

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 63

https://docs.openstack.org/octavia/latest/reference/introduction.html
https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/advanced-config/configure-octavia.html

Storage planning
Depending on your workload requirements, consider different types of storage. This section
provides information on how to plan different types of storage for your OpenStack environment.
You typically need to plan your MCP cluster with the following types of storage:
Image storage

Storage required for storing disk images that are used in the OpenStack environment.
Ephemeral block storage

Storage for the operating systems of virtual servers in an OpenStack environment, bound to
the life cycle of the instance. As its name suggests, the storage will be deleted once the
instance is terminated. Ephemeral storage does persist through a reboot of a virtual server
instance.

Persistent block storage
Block storage that exists and persists outside a virtual server instance. It is independent of
virtual machine images or ephemeral disks and can be attached to virtual servers.

Object storage
Storage for unstructured data with capabilities not provided by other types of storage, such
as separation of metadata from other data and an API.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 64

Image storage planning
The OpenStack Image service (Glance) provides a REST API for storing and managing virtual
machine images and snapshots. Glance requires you to configure a backend for storing images.
MCP supports the following options as Glance backend:
Ceph cluster

A highly scalable distributed object storage that is recommended as an Image storage for
environments with a large number of images and/or snapshots. If used as a backend for both
image storage and ephemeral storage, Ceph can eliminate caching of images on compute
nodes and enable copy-on-write of disk images, which in large clouds can save a lot of
storage capacity.

GlusterFS
A distributed network file system that allows you to create a reliable and redundant data
storage for image files. This is the default option for an Image store with the File backend in
MCP.

The default backend used in Mirantis Reference Architecture is Ceph cluster.

Seealso
Ceph planning

Block storage planning
The OpenStack component that provides an API to create block storage for your cloud is called
OpenStack Block Storage service, or Cinder. Cinder requires you to configure one or multiple
supported backends.
MCP Reference Architecture uses Ceph cluster as a default backend for OpenStack Block Storage
service. Ceph supports object, block, and file storage. Therefore, you can use it as OpenStack
Block Storage service back end to deliver a reliable, highly available block storage solution
without single points of failure.
In addition to Ceph cluster, MCP supports Cinder drivers. If you already use a network storage
solution, such as NAS or SAN, you can use it as a storage backend for Cinder using a
corresponding Cinder driver, if available.

Seealso
Ceph planning

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 65

Object storage planning
MCP supports Ceph as an only option for Object Storage. Mirantis reference architecture uses
Ceph RADOS Gateway to provide an API compatible with OpenStack Swift API and AWS S3 API.
See Release Notes: Known Issues for the list of identified limitations in the API compatibility if
any.

Seealso
Ceph planning

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 66

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/known-issues.html

Ceph planning
Proper planning is crucial for building a reliable, resilient, and performant Ceph cluster. The
following pages will advise on planning a Ceph cluster suitable for your performance and
resilience requirements.

MCP Ceph cluster overview
MCP uses Ceph as a primary solution for all storage types, including image storage, ephemeral
storage, persistent block storage, and object storage. When planning your Ceph cluster, consider
the following:
Ceph version

Supported versions of Ceph are listed in the MCP Release Notes: Release artifacts section.
Daemon colocation

Ceph uses the Ceph Monitor (ceph.mon), object storage (ceph.osd), Ceph Manager
(ceph-mgr) and RADOS Gateway (ceph.radosgw) daemons to handle the data and cluster
state. Each daemon requires different computing capacity and hardware optimization.
Mirantis recommends running Ceph Monitors and RADOS Gateway daemons on dedicated
virtual machines or physical nodes. Colocating the daemons with other services may
negatively impact cluster operations. Three Ceph Monitors are required for a cluster of any
size. If you have to install more than three, the number of Monitors must be odd.
Ceph Manager is installed on every node (virtual or physical) running Ceph Monitor, to
achieve the same level of availability.

Note
MCP Reference Architecture uses 3 instances of RADOS Gateway and 3 Ceph Monitors.
The daemons run in dedicated virutal machines, one VM of each type per infrastructure
node, on 3 infrastructure nodes.

Store type
Ceph can use either the BlueStore or FileStore backend. The BlueStore back end typically
provides better performance than FileStore because in BlueStore the journaling is internal
and more light-weight compared to FileStore. Mirantis supports BlueStore only for Ceph
versions starting from Luminous.
For more information about Ceph backends, see Storage devices.

• BlueStore configuration
BlueStore uses Write-Ahead Log (WAL) and Database to store the internal journal
and other metadata. WAL and Database may reside on a dedicated device or on the
same device as the actual data (primary device).

• Dedicated

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 67

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/release-artifacts.html
http://docs.ceph.com/docs/master/rados/configuration/storage-devices/

Mirantis recommends using a dedicated WAL/DB device whenever possible.
Typically, it results in better storage performance. One write-optimized SSD
is recommended for WAL/DB metadata per five primary HDD devices.

• Colocated
WAL and Database metadata are stored on the primary device. Ceph will
allocate space for data and metadata storage automatically. This
configuration may result in slower storage performance in some
environments.

• FileStore configuration
Mirantis recommends using dedicated write-optimized SSD devices for Ceph journal
partitions. Use one journal device per five data storage devices.
It is possible to store the journal on the data storage devices. However, Mirantis
does not recommend it unless special circumstances preclude the use of dedicated
SSD journal devices.

Note
MCP Reference Configuration uses BlueStore store type as a default.

Ceph cluster networking
A Ceph cluster requires having at least the front-side network, which is used for client
connections (public network in terms of Ceph documentation). Ceph Monitors and OSDs are
always connected to the front-side network.
To improve the performance of the replication operations, you may additionally set up the
back-side network (or cluster network in terms of Ceph documentation), which is used for
communication between OSDs. Mirantis recommends assigning dedicated interface to the
cluster network. For more details on Ceph cluster networking, see Ceph Network
Configuration Reference.

Pool parameters
Set up each pool according to expected usage. Consider at least the following pool
parameters:

• min_size sets the minimum number of replicas required to perform I/O on the pool.
• size sets the number of replicas for objects in the pool.
• type sets the pool type, which can be either replicated or erasure.

The following diagram describes the Reference Architecture of Ceph cluster in MCP:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 68

http://docs.ceph.com/docs/master/rados/configuration/network-config-ref/
http://docs.ceph.com/docs/master/rados/configuration/network-config-ref/

Seealso

• Ceph services
• Ceph Network Configuration Reference

Ceph services
When planning a Ceph cluster, consider the following guidelines for the Ceph Monitor and
RADOS Gateway services.
Ceph Monitor service

The Ceph Monitor service is quorum-based. Three instances of Ceph Monitor are required to
ensure fault tolerance and typically suffice for any number of OSD nodes. If additional Ceph
Monitors are required for any reason, the total number of instances must be odd.
Run one Ceph Monitor per physical infrastructure node to minimize the risk of losing the
Monitor quorum upon server hardware failure.
The recommended minimal size of a Ceph Monitor VM is:

• 4 vCPU
• 8 GB RAM
• 32 GB disk
• 10 GbE network

RADOS Gateway service
The RADOS Gateway service is required to provide Swift and S3-compatible Object Storage
API on top of Ceph. RADOS Gateway is stateless and puts no constraints on the number of

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 69

http://docs.ceph.com/docs/master/rados/configuration/network-config-ref/

nodes in a cluster. Start with two instances behind a load balancer for redundancy in case of
failure.
Mirantis recommends running the RADOS Gateway service on a dedicated VM with at least:

• 4 vCPU
• 16 GB RAM
• Minimum 16 GB disk space for the operating system
• 10 GbE network connection internally and externally

RADOS Gateway scales out horizontally, so you can increase the number of VMs to get more
concurrent connections processed.

Additional Ceph considerations
When planning storage for your cloud, you must consider performance, capacity, and
operational requirements that affect the efficiency of your MCP environment.
Based on those considerations and operational experience, Mirantis recommends no less than
nine-node Ceph clusters for OpenStack production environments. Recommendation for test,
development, or PoC environments is a minimum of five nodes.

Note
This section provides simplified calculations for your reference. Each Ceph cluster must be
evaluated by a Mirantis Solution Architect.

Capacity
When planning capacity for your Ceph cluster, consider the following:

• Total usable capacity
The existing amount of data plus the expected increase of data volume over the
projected life of the cluster.

• Data protection (replication)
Typically, for persistent storage a factor of 3 is recommended, while for ephemeral
storage a factor of 2 is sufficient. However, with a replication factor of 2, an object can
not be recovered if one of the replicas is damaged.

• Cluster overhead
To ensure cluster integrity, Ceph stops writing if the cluster is 90% full. Therefore, you
need to plan accordingly.

• Administrative overhead
To catch spikes in cluster usage or unexpected increases in data volume, an additional
10-15% of the raw capacity should be set aside.

• BlueStore backend

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 70

According to the official Ceph documentation, it is recommended that the BlueStore
block.db device size must not be smaller than 4% of the block size. For example, if the
block size is 1 TB, then the block.db device size must not be smaller than 40 GB. Salt
formulas do not perform complex calculations on the parameters. Therefore, plan the
cloud storage accordingly.

The following table describes an example of capacity calculation:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 71

Example calculation

Parameter Value
Current capacity persistent 500 TB
Expected growth over 3 years 300 TB
Required usable capacity 800 TB
Replication factor for all pools 3
Raw capacity 2.4 PB
With 10% cluster internal reserve 2.64 PB
With operational reserve of 15% 3.03 PB
Total cluster capacity 3 PB

Overall sizing
When you have both performance and capacity requirements, scale the cluster size to the higher
requirement. For example, if a Ceph cluster requires 10 nodes for capacity and 20 nodes for
performance to meet requirements, size the cluster to 20 nodes.
Operational recommendations

• A minimum of 9 Ceph OSD nodes is recommended to ensure that a node failure does not
impact cluster performance.

• Mirantis does not recommend using servers with excessive number of disks, such as more
than 24 disks.

• All Ceph OSD nodes must have identical CPU, memory, disk and network hardware
configurations.

• If you use multiple availability zones (AZ), the number of nodes must be evenly divisible by
the number of AZ.

Perfromance considerations
When planning performance for your Ceph cluster, consider the following:

• Raw performance capability of the storage devices. For example, a SATA hard drive
provides 150 IOPS for 4k blocks.

• Ceph read IOPS performance. Calculate it using the following formula:

number of raw read IOPS per device X number of storage devices X 80%

• Ceph write IOPS performance. Calculate it using the following formula:

number of raw write IOPS per device X number of storage
devices / replication factor X 65%

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 72

• Ratio between reads and writes. Perform a rough calculation using the following formula:

read IOPS X % reads + write IOPS X % writes

Note
Do not use these formulas for a Ceph cluster that is based on SSDs only. Technical
specifications of SSDs may vary thus the performance of SSD-only Ceph clusters must be
evaluated individually for each model.

Storage device considerations

• The expected number of IOPS that a storage device can carry out, as well as its throughput,
depends on the type of device. For example, a hard disk may be rated for 150 IOPS and 75
MB/s. These numbers are complementary because IOPS are measured with very small files
while the throughput is typically measured with big files.
Read IOPS and write IOPS differ depending on the device. Сonsidering typical usage
patterns helps determining how many read and write IOPS the cluster must provide. A ratio
of 70/30 is fairly common for many types of clusters. The cluster size must also be
considered, since the maximum number of write IOPS that a cluster can push is divided by
the cluster size. Furthermore, Ceph can not guarantee the full IOPS numbers that a device
could theoretically provide, because the numbers are typically measured under testing
environments, which the Ceph cluster cannot offer and also because of the OSD and
network overhead.
You can calculate estimated read IOPS by multiplying the read IOPS number for the device
type by the number of devices, and then multiplying by ~0.8. Write IOPS are calculated as
follows:

(the device IOPS * number of devices * 0.65) / cluster size

If the cluster size for the pools is different, an average can be used. If the number of devices
is required, the respective formulas can be solved for the device number instead.

• Consider disk weights. For Ceph Nautilus, by default, a balancer module actively balances
the usage of each disk. For Ceph Luminous, by default, the weight is set depending on disk
space. To set a disk-specific weight, specify it as an integer using the default Ceph OSD
definition field. However, Mirantis does not recommend setting Ceph OSDs weights
manually.

disks:
 - dev: /dev/vdc
 ...
 weight: 5

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 73

Ceph OSD hardware considerations
When sizing a Ceph cluster, you must consider the number of drives needed for capacity and the
number of drives required to accommodate performance requirements. You must also consider
the largest number of drives that ensure all requirements are met.
The following list describes generic hardware considerations for a Ceph cluster:

• Use HDD storage devices for Ceph Object Storage Devices (OSDs). Ceph is designed to work
on commercial off-the-shelf (COTS) hardware. Most disk devices from major vendors are
supported.

• Create one OSD per HDD in Ceph OSD nodes.
• Allocate 1 CPU thread per OSD.
• Allocate 1 GB of RAM per 1 TB of disk storage on the OSD node.
• Disks for OSDs must be presented to the system as individual devices.

• This can be achieved by using Host Bus Adapter (HBA) mode for disk controller.
• RAID controllers are only acceptable if disks can be presented to the operating system

as individual devices (JBOD or HBA mode).
• Place Ceph write journals on write-optimized SSDs instead of OSD HDD disks. Use one SSD

journal device for 4 - 5 OSD hard disks.
The following table provides an example of input parameters for a Ceph cluster calculation:

Example of input parameters

Parameter Value
Virtual instance size 40 GB
Read IOPS 14
Read to write IOPS ratio 70/30
Number of availability zones 3

For 50 compute nodes, 1,000 instances
Number of OSD nodes: 9, 20-disk 2U chassis
This configuration provides 360 TB of raw storage and with cluster size of 3 and 60% used
initially, the initial amount of data should not exceed 72 TB (out of 120 TB of replicated storage).
Expected read IOPS for this cluster is approximately 20,000 and write IOPS 5,000, or 15,000
IOPS in a 70/30 pattern.

Note
In this case performance is the driving factor, and so the capacity is greater than required.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 74

For 300 compute nodes, 6,000 instances
Number of OSD nodes: 54, 36-disks chassis
The cost per node is low compared to the cost of the storage devices and with a larger number
of nodes failure of one node is proportionally less critical. A separate replication network is
recommended.
For 500 compute nodes, 10,000 instances
Number of OSD nodes: 60, 36-disks chassis
You may consider using a larger chassis. A separate replication network is required.

Tenant Telemetry planning
MCP provides Tenant Telemetry for OpenStack environments based on the OpenStack Telemetry
Data Collection service, or Ceilometer. Tenant Telemetry assists in resource utilization planning
and expansion, addresses scalability issues by collecting various OpenStack resource metrics, as
well as provides the metrics to such auto-scaling systems as OpenStack Orchestration service,
or Heat, that is used to launch stacks of resources, such as virtual machines.

Caution!

Tenant Telemetry based on Ceilometer, Aodh, Panko, and Gnocchi is supported starting
from the Pike OpenStack release and does not support integration with StackLight LMA.
However, you can add the Gnocchi data source to Grafana to view the Tenant Telemetry
data.

Tenant Telemetry stores scalability metrics in the time-series database called Gnocchi and
events in Panko. By default, Panko uses MySQL as a backend with the same Galera cluster as for
the OpenStack API. Gnocchi uses the following backends:

• MySQL Galera cluster as indexing storage (using the same MySQL cluster as the OpenStack
API)

• Redis as incoming metrics storage set up on the same nodes as Tenant Telemetry
• Aggregation metrics storage:

• Ceph. This option is recommended for production.
• File backend based on GlusterFS. Use this option only for testing purposes.

Note
To define the amount of resources for Gnocchi, calculate the approximate amount of
stored data using the How to plan for Gnocchi’s storage instruction. Roughly, 1000
instances produce approximately 60 GB of telemetry data per year.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 75

https://gnocchi.osci.io/operating.html#how-to-plan-for-gnocchis-storage

Example:
The cloud includes 15 compute nodes with 256 GB RAM each:

15 * 256 = 3840 GB RAM raw

Therefore, the cloud includes approximately 3.84 thousands of instances 1 GB each.
Assuming that 1000 instances produce about 60 GB of metering data:

3.840 * 60 GB = 230 GB of telemetry data for cloud

A huge amount of short-living instances may increase this value because the data is
stored with different aggregation rules. The older the data, the higher is the aggregation
step.

Tenant Telemetry supports the community Aodh service that uses the Gnocchi API and provides
an alarm evaluator mechanism based on metrics. Aodh allows triggering actions that are based
on defined rules against sample or event data of OpenStack services that is collected by
Ceilometer. After the event-driven alarm evaluation, Aodh provides instant alarm notifications to
the user. The default Aodh backend is the same Galera cluster as used for the Openstack API.
To gather metrics from the compute nodes, Tenant Telemetry uses the Ceilometer Compute
Agent installed on each compute node.
The following diagram displays the composition of Tenant Telemetry components across MCP
nodes:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 76

The following diagram displays the data flow across the Tenant Telemetry services:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 77

The following table describes the components of Tenant Telemetry:

Tenant Telemetry components

Component Description

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 78

Ceilometer
agents • Central agents collect metrics from the OpenStack services and send

them to the notifications.sample queue. Central agents run on the
virtualized control plane nodes.

• Compute agents request virtual instances metadata from the Nova API
and send them to the notifications.sample queue. Compute agents run on
the compute nodes.

• Notification agents collect messages from the OpenStack services
notification.sample and notifications.info queues, transform if required,
and publish them to Gnocchi and Panko.

Gnocchi
agent • Metricd processes the measures, computes their aggregates, and stores

them into the aggregate storage. Metricd also handles other cleanup
tasks, such as deleting metrics marked for deletion.

Aodh agents
• API server (aodh-api) provides access to the alarm information in the data

store.
• Alarm evaluator (aodh-evaluator) fires alarms based on the associated

statistics trend crossing a threshold over a sliding time window.
• Notification listener (aodh-listener) fires alarms based on defined rules

against events that are captured by the notification agents of the
Telemetry Data Collection service.

• Alarm notifier (aodh-notifier) allows setting alarms based on the
threshold evaluation for a collection of samples.

Heat planning
When creating stacks, the OpenStack Orchestration service (Heat) reuses the incoming token of
a user to create resources under the user’s project ownership and to honor RBAC restrictions
applicable to this user.
This logic has certain consequences when the stacks creation takes longer than the token
expiration time set in the OpenStack Identity service (Keystone) configuration. Therefore, you
should plan the expected type of the Heat stacks users to be created in your MCP cluster.
Consider the following common issues and ways to overcome them:

• Heat fails to create a stack resource
When creating resources from a template, Heat internally builds a graph for resources to be
created, updated, or deleted in a well-defined order. If at some point an operation on
intermediate resources takes longer than the Keystone token expiration time, the user
token that Heat keeps expires and Heat can no longer use it to access other OpenStack
APIs. This manifests as 401 Unauthorized error when trying to modify (create, update, or
delete) a resource in another OpenStack service.
If you anticipate that your users will create such stacks, consider enabling the following
option in the Heat configuration file:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 79

[DEFAULT]
reauthentication_auth_method = trusts

With this setting, Heat creates a Keystone trust between the user set in the [trustee] section
of the Heat configuration file and the user who made the request to Heat. With this trust
available, Heat can impersonate the user in all communications with other OpenStack APIs
and get a new Keystone token when the initial one expires.

Warning
This setting effectively circumvents the token expiry.

Note
Alternatively, a cloud operator can increase the token lifetime to be longer than the
maximum anticipated Heat stack creation time.

Since the MCP 2019.2.4 maintenance update, you can set the Keystone trust in your Reclass
cluster model:

heat:
 server:
 reauthentication_auth_method: trusts

• Signaling to the Heat WaitCondition with curl is failing
A common use case when provisioning the Nova instances using the Heat templates is to
utilize the OS::Heat::WaitCondition and OS::Heat::WaitConditionHandle resources to signal
Heat that the initial configuration of the instance with the user data script is done. This is
commonly done using the value of the curl_cli attribute of the OS::WaitConditionHandle
resource inside the user data to be passed to Nova when creating the instance. The value of
this attribute contains a predefined command that uses the curl tool to make a request to
the Heat API including the appropriate address and the Keystone token. However, the token
to use with this request is generated when the corresponding
OS::Heat::WaitConditionHandle resource goes to CREATE_COMPLETE state. If calling of this
command while executing the user data script is long enough after the token was created,
the token may become expired and signaling Heat will fail.
To fix this issue, write the Heat templates in such a way that the
OS::Heat::WaitConditionHandle resource is created immediately before the server it will be
used with. Use the depends_on directive in the resource definition to precisely plan the
instantiation of this resource after all other prerequisite resources for the given server are
created.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 80

However, if you anticipate that the execution of the user data script inside the instance will
take more than the configured expiration time of the Keystone tokens, a cloud operator
should either increase the lifetime of the token or use other methods to signal Heat. For
more details, see Heat documentation.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 81

https://docs.openstack.org/heat/latest/template_guide/software_deployment.html#signals-and-wait-conditions

Kubernetes cluster

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

Kubernetes is an orchestrator for containerized applications. MCP enables you to deploy a
Kubernetes cluster on bare metal and provides lifecycle management of the Kubernetes cluster
through the continuous integration and continuous delivery pipeline, as well as monitoring
through the MCP Logging, Monitoring, and Alerting solution.

Kubernetes cluster overview

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

Kubernetes provides orchestration, scheduling, configuration management, horizontal pods
scaling, and updates to the containerized customer workloads. Kubernetes components are
typically installed on bare metal nodes.
At a high level, a Kubernetes cluster includes the following types of nodes:
Kubernetes Master

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 82

https://github.com/salt-formulas
https://github.com/salt-formulas

Runs the services related to the Kubernetes control plane services. The default hostname is
ctl0X.

Kubernetes Node
Runs user workloads (previously known as Minion). In MCP, a Kubernetes Node is identical to
a compute node. The default hostname is cmp00X.

The MCP Kubernetes design is flexible and allows you to install the Kubernetes control plane
services on an arbitrary number of nodes. For example, some installations may require you to
dedicate a node for the etcd cluster members. The minimum recommended number of nodes in
the Kubernetes control plane for production environments is three.
The following diagram describes the minimum production Kubernetes installation with Calico:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 83

Kubernetes cluster components

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 84

https://github.com/salt-formulas

Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

A Kubernetes cluster includes the Kubernetes components as well as supplementary services
that run on all or some of the nodes.
Unless noted otherwise, all listed components run as daemon processes on a host operating
system, controlled by systemd.
The components can be divided into the following types:
Common components

These components run on all nodes in a Kubernetes cluster.

• The kubelet agent service is responsible for creating and managing containerd
containers on the Kubernetes cluster nodes.

• The kube-proxy service is responsible for the TCP/UDP stream forwarding or round-robin
TCP/UDP forwarding across various backends to reach cluster services (acts as a service
proxy). This service is used for the Calico SDN only.

Master components
These components run on the Kubernetes Master nodes and provide the control plane
functionality.

• The etcd service is a distributed key-value store that stores data across a Kubernetes
cluster.

• The kube-addon-manager service manages two classes of addons with given template
files located at /etc/kubernetes/addons/ by default. It runs as a pod controlled by
Kubernetes.

• The kube-apiserver REST API server verifies and configures data for such API objects as
pods, services, replication controllers, and so on.

• The kubectl command-line client for the Kubernetes API enables cloud operators to
execute commands against Kubernetes clusters.

• The kube-control-manager process embeds the core control loops shipped with
Kubernetes, such as the replication controller and so on.

• The kube-scheduler utility implements the scheduling functions of workloads
provisioning in pods to specific Kubernetes Nodes according to the capacity
requirements of workloads, Nodes allowances, and user-defined policies, such as
affinity, data localization, and other custom restraints. The kube-scheduler utility may
significantly affect performance, availability, and capacity.

Networking components
These components run on the Kubernetes nodes.

• The Calico SDN solution provides pure L3 networking to a Kubernetes cluster. Calico
runs as a containerd container calico-node.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 85

• The Container Network Interface (CNI) plugin for the Calico SDN establishes a standard
for the network interface configuration in Linux containers.

Mandatory addons
These components are mandatory for an MCP Kubernetes cluster.

• The coredns process manages the DNS requests for the Kubernetes Nodes as well as
monitors the Kubernetes Master nodes for changes in Services and Endpoints. It runs
runs on the Kubernetes Master nodes as a pod controlled by Kubernetes.

Optional components
You may need to install these components if your environment has specific requirements:

• The cni-genie addon allows container orchestrators to use multiple CNI plugins in
runtime.

• The Kubernetes dashboard allows using a web UI to manage applications that run on a
Kubernetes cluster as well as troubleshoot them through the web UI.

• The external-dns manages DNS records dynamically through the Kubernetes resources
in a DNS provider-agnostic way, as well as makes these resources discoverable through
public DNS servers.

• The helm addon is a tool for managing Kubernetes charts.
• The ingress-nginx controller provides load balancing, SSL termination, and name-based

virtual hosting. The NGINX Ingress controller requires MetalLB to be enabled on a
cluster.

• The metallb service for Calico provides external IP addresses to the workloads services,
for example, NGINX, from the pool of addresses defined in the MetalLB configuration.

• The sriov-cni CNI plugin allows the Kubernetes pods to attach to an SR-IOV virtual
function.

Network planning

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 86

https://github.com/salt-formulas

Mirantis Cloud Platform supports Calico as a networking solution for Kubernetes clusters.
Calico is a distributed networking controller integrated through the Container Network Interface
(CNI) plugin that provides pure L3 networking to a Kubernetes cluster. Calico runs as a
containerd container calico-node on the Kubernetes nodes. This container includes all Calico
services.
When using Calico, the workload network, which is analogous to the tenant network in
OpenStack, is combined with the public and storage networks into one flat L3 space. You can
also specify the pool.address parameter for particular hosts to define an interface for the
workload network traffic. This parameter defines a host IP address that is used as a source IP
address to reach other nodes in a Kubernetes cluster.
Kubernetes has one logical network for all Kubernetes workloads. Each Kubernetes Master node
and Kubernetes Node has one network interface for the traffic flow between nodes.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

Types of networks
When planning your MCP Kubernetes cluster, consider the types of traffic that your workloads
generate and design your network accordingly.
An MCP Kubernetes cluster with Calico contains the following types of the underlay networks:

• PXE/Management
The non-routable network that is used for MAAS and Salt for DHCP traffic, provisioning
and managing nodes. It usually requires a 1 Gbps network interface.

• Control network
The routable network for managing traffic between kube-api, kubelet, and OpenContrail
(or Calico). It is also used to access the KVM nodes.

• Public network
The routable network for external IP addresses of the LoadBalancer services managed
by MetalLB. The public and workload networks are combined into one flat IP address
space. Network traffic can then be separated using network policies and IP pools.

• Workload network
The routable network for communication between containers in a cluster that is
managed by Calico. It is analogous to the tenant network in OpenStack.

• Storage network (optional)
The routable network used for storage traffic.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 87

Calico networking considerations
As Kubernetes does not provide native support for inter-pod networking, MCP uses Calico as an
L3 networking provider for all Kubernetes deployments through the Container Network Interface
(CNI) plugin. The CNI plugin establishes a standard for the network interface configuration in
Linux containers.
Calico ensures propagation of a container IP address to all Kubernetes Nodes over the BGP
protocol, as well as provides network connectivity between the containers. It also provides
dynamic enforcement of the Kubernetes network policies. Calico uses the etcd key-value store
or the Kubernetes API datastore as a configuration data storage.
Calico runs in a container called calico-node on every node in a Kubernetes cluster. The
calico-node container is controlled by the operating system directly as a systemd service.
The calico-node container incorporates the following main Calico services:
Felix

The primary Calico agent which is responsible for programming routes and ACLs, as well as
for all components and services required to provide network connectivity on the host.

BIRD
A lightweight BGP daemon that distributes routing information between the nodes of the
Calico network.

confd
Dynamic configuration manager for BIRD, triggered automatically by updates in the
configuration data.

The Kubernetes controllers for Calico are deployed as a single pod in a Calico kube-controllers
deployment that runs as a Kubernetes addon. The Kubernetes controllers for Calico are only
required when using the etcd datastore, which is the default configuration in MCP. The
Kubernetes controllers for Calico are enabled by default and are as follows:
Policy controller

Monitors network policies and programs the Calico policies.
Profile controller

Monitors namespaces and programs the Calico profiles.
Workload endpoint controller

Monitors changes in pod labels and updates the Calico workload endpoints.
Node controller

Monitors removal of the Kubernetes Nodes and removes corresponding data from Calico.

Seealso

• Project Calico in Kubernetes
• Calico official documentation
• Calico kube-controllers

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 88

https://kubernetes.io/docs/concepts/cluster-administration/networking/#project-calico
https://docs.projectcalico.org
https://docs.projectcalico.org/v3.3/reference/kube-controllers/configuration

Network checker overview
Network checker, or Netchecker, is a Kubernetes application that verifies connectivity between
the Kubernetes nodes.
Netchecker comprises the following components:

• Netchecker agent is deployed on every Kubernetes node using the Daemonset mechanism
which ensures automatic pod management. Agents periodically gather networking
information from the Kubernetes nodes and send it to the Netchecker server.

• Netchecker server is deployed in a dedicated Kubernetes pod and exposed inside of the
cluster through the Kubernetes service resource. All Netchecker agents connect to the
Netchecker server through the service DNS name.

The communication mechanism between the user and Netchecker is the HTTP RESTful interface.
You can run the following requests:

• GET - /api/v1/connectivity_check - request to test the connectivity between the Netchecker
server and agents. The response contains information about possible issues.
Example of the request:

curl http://nc-server-ip:port/api/v1/connectivity_check

This request returns the following:

Message A text that describes the status of the
connection between the agent and server
pods. Example:
All 4 pods successfully reported back to
the server.

Absent Indicates that the Netchecker server failed
to receive reports from one or more
Netchecker agents since the deployment of
the Netchecker application. This field can
be empty.

Outdated Indicates that the Netchecker server failed
to receive reports from one or more agents
within the configured report interval due to
a connectivity error. This field can be
empty.

The following diagram illustrates how the Netchecker works:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 89

Seealso
MCP Operations Guide: Monitor connectivity between Kubernetes nodes using Netchecker

MetalLB support
In MCP, MetalLB is a Kubernetes add-on that provides a network load balancer for bare metal
Calico-based Kubernetes clusters using standard routing protocols.
MetalLB support is available starting Kubernetes 1.9.0 on clusters that do not have the network
load balancing implemented yet.
Since MetalLB provides a standard network load balancer functionality, it is compatible with
several Kubernetes networking add-ons.
In MCP, MetalLB supports only the layer-2 mode. For details, see: MetalLB in layer-2 mode.
MetalLB in the Border Gateway Protocol (BGP) mode is not supported yet.
In an MCP Kubernetes cluster, MetalLB runs in pods on the Kubernetes Nodes.
When using MetalLB, you can also enable the NGINX Ingress controller to provide an external
access to Kubernetes services.

Seealso

• Official MetalLB documentation
• MCP Deployment Guide: Enable MetalLB
• Ingress resource
• NGINX Ingress Controller for Kubernetes

• GitHub NGINX Ingress controller project

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 90

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/kubernetes-operations/use-netchecker.html
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/
https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/deploy-mcp-cluster-manually/deploy-kubernetes-cluster-manually/enable-metal-lb.html
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.github.io/ingress-nginx/
https://github.com/kubernetes/ingress-nginx/blob/master/README.md

Etcd cluster

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

In the MCP Kubernetes cluster deployment, etcd is used for both Kubernetes components and
Calico networking. Etcd is a distributed key-value store that allows you to store data from cluster
environments. Etcd is based on the Raft consensus algorithm that ensures fault-tolerance and
high performance of the store.
Every instance of etcd operates in the full daemon mode participating in Raft consensus and
having persistent storage. Three instances of etcd run in full mode on the Kubernetes Master
nodes. This ensures quorum in the cluster and resiliency of service. The etcd service runs as a
systemd service.

High availability in Kubernetes

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 91

https://github.com/salt-formulas
https://github.com/salt-formulas

In a Calico-based MCP Kubernetes cluster, the control plane services are highly available and
work in active-standby mode. All Kubernetes control components run on every Kubernetes
Master node of a cluster with one node at a time being selected as a master replica and others
running in the standby mode.
Every Kubernetes Master node runs an instance of kube-scheduler and kube-controller-manager.
Only one service of each kind is active at a time, while others remain in the warm standby mode.
The kube-controller-manager and kube-scheduler services elect their own leaders natively.
API servers work independently while external or internal Kubernetes load balancer dispatches
requests between all of them. Each of the three Kubernetes Master nodes runs its own instance
of kube-apiserver. All Kubernetes Master nodes services work with the Kubernetes API locally,
while the services that run on the Kubernetes Nodes access the Kubernetes API by directly
connecting to an instance of kube-apiserver.
The following diagram describes the API flow in a highly available Kubernetes cluster where each
API instance on every Kubernetes Master node interacts with each HAProxy instance, etcd
cluster, and each kubelet instance on the Kubernetes Nodes.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 92

High availability of the proxy server is ensured by HAProxy. HAProxy provides access to the
Kubernetes API endpoint by redirecting requests to instances of kube-apiserver in a round-robin
fashion. The proxy server sends API traffic to available backends and HAProxy prevents the
traffic from going to the unavailable nodes. The Keepalived daemon provides VIP management
for the proxy server. Optionally, SSL termination can be configured on HAProxy, so that the
traffic to kube-apiserver instances goes over the internal Kubernetes network.

Virtual machines as Kubernetes pods

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

MCP allows running QEMU/KVM virtual machines as Kubernetes pods using Virtlet.
Virtlet is a Kubernetes Container Runtime Interface (CRI) implementation that is packaged as a
Docker image and contains such components as a libvirt daemon, QEMU/KVM wrapper, and so
on.
Virtlet enables you to run unmodified QEMU/KVM virtual machines that do not include an
additional containerd layer as in similar solutions in Kubernetes. Virtlet supports all standard
Kubernetes objects, such as ReplicaSets, Deployments, DaemonSets, and so on, as well as their
operations.
Virtlet uses libvirt API to manage virtual machine and translates Kubernetes API primitives into
operations over libvirt.
The following diagram describes the Virtlet components and interactions between them.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 93

https://github.com/salt-formulas

Virtlet includes the following components:

• Virtlet manager that implements CRI interfaces for virtualization and image handling
• A libvirt instance
• Virtlet tapmanager that is responsible for managing a VM networking
• Virtlet vmwrapper that is responsible for preparing environment for an emulator
• An emulator (QEMU with KVM support and with a possibility to disable KVM)
• Container Runtime Interface (CRI) Proxy that provides the ability to mix containerd and

VM-based workloads on the same Kubernetes node
The image service provides VM images accessible through HTTP in a local cluster environment. It
is only used as an optional helper because Virtlet manager can pull images from any HTTP
server accessible from the node.

Limitations
Before you include Virtlet to your MCP Kubernetes cluster architecture, consider the following
limitations:

• Virtlet with OpenContrail is available as technical preview. Use such configuration for testing
and evaluation purposes only.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 94

https://github.com/Mirantis/virtlet/blob/master/cmd/virtlet/virtlet.go
https://github.com/Mirantis/virtlet/tree/master/pkg/tapmanager
https://github.com/Mirantis/virtlet/blob/master/cmd/vmwrapper/vmwrapper.go
https://github.com/Mirantis/virtlet/blob/master/cmd/criproxy/criproxy.go

Virtlet manager
Virtlet manager has the main binary file that is responsible for providing API that fulfills the
Container Runtime Interface (CRI) specification. Virtlet manager handles the requests from
kubelet and has the following functionality:

• Control the preparation of libvirt VM environment (virtual drives, network interfaces,
trimming resources like RAM, CPU).

• Call CNI plugins to setup network environment for virtual machines.
• Request libvirt to call vmwrapper instead of using emulator directly.
• Query libvirt for VM statuses.
• Instruct libvirt to stop VMs.
• Call libvirt to remove a VM environment.

Seealso
Virtlet manager

Virtlet tapmanager
Virtlet tapmanger controls the setup of VM networking using CNI that is started by the virtlet
command, since tapmanger uses the same virtlet binary.
The Virtlet tapmanger process has the following functionality:

• Take the setup requests from the Virtlet manager and set up networking for a VM by
producing an open file descriptor that corresponds to the TAP device.

• Run DHCP server for each active VM.
• Handle requests from vmwrapper by sending the file descriptor over a Unix domain socket

to vmwrapper. As a result, this file descriptor can be used in another mount namespace of a
container. And you do not need a shared access to the directory containing network
namespaces.

• Remove a VM network upon the Virtlet manager requests.

Virtlet vmwrapper
Virtlet vmwrapper is controlled by libvirt and runs the emulator (QVM/QEMU).
The Virtlet vmwrapper process has the following functionality:

1. Request TAP file descriptor from tapmanager.
2. Add the command-line arguments required by the emulator to use the TAP device.
3. Spawn the emulator.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 95

https://kubernetes.io/docs/concepts/cluster-administration/network-plugins/#cni
https://github.com/Mirantis/virtlet/blob/master/cmd/virtlet/

Seealso
vmwrapper

Container Runtime Interface Proxy
Container Runtime Interface (CRI) Proxy provides a way to run multiple CRI implementations on
the same node, for example, Virtlet and containerd. It enables running infrastructure pods such
as kube-proxy. CRI Proxy allows using containerd as one of CRI implementations on the
multi-runtime nodes.

Seealso
CRI Proxy design

OpenStack cloud provider for Kubernetes

Caution!

Kubernetes support termination notice
Starting with the MCP 2019.2.5 update, the Kubernetes component is no longer supported
as a part of the MCP product. This implies that Kubernetes is not tested and not shipped
as an MCP component. Although the Kubernetes Salt formula is available in the
community driven SaltStack formulas ecosystem, Mirantis takes no responsibility for its
maintenance.
Customers looking for a Kubernetes distribution and Kubernetes lifecycle management
tools are encouraged to evaluate the Mirantis Kubernetes-as-a-Service (KaaS) and Docker
Enterprise products.

Note
This feature is available as technical preview in the MCP Build ID 2019.2.0. Starting from
the MCP 2019.2.2 update, the feature is fully supported.

The OpenStack cloud provider extends the basic functionality of Kubernetes by fulfilling the
provider requirement for several resources. This is achieved through communication with

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 96

https://github.com/Mirantis/virtlet/blob/master/cmd/vmwrapper/vmwrapper.go
https://github.com/Mirantis/criproxy/blob/v0.14.0/README.md
https://github.com/salt-formulas

several OpenStack APIs. As a rule, the Kubernetes cluster must consist of instances that are
deployed on an OpenStack environment in order to activate the cloud provider.
Additionally, the OpenStack environment must have the following components installed: Nova,
Keystone, Neutron (with Octavia), and Cinder.
In the future, DNS support may become available through the Designate project.
Several of the Kubernetes components communicate with the OpenStack environment services
in order to obtain information as well as create and maintain objects.
The kubelet service accesses nova to obtain the nova instance name. The kubelet node name
will be set to the instance name. It also accesses cinder to mount PersistentVolumes that are
requested by a pod.
The kube-apiserver service accesses nova to limit admission to the Kubernetes cluster. The
service only allows the cloudprovider-enabled Kubernetes nodes to register themselves into the
cluster.
The openstack-cloud-controller-manager service accesses cinder and neutron to create
PersistentVolumes (using cinder) and LoadBalancers (using neutron-lbaas).
Below is a diagram of the components involved and how they interact.

Fixed in 2019.2.2 OpenStack cloud provider has the following limitation: it works as designed only
when a Kubernetes node has only one physical network interface. For more details, see the
community bug.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 97

https://github.com/kubernetes/cloud-provider-openstack/issues/407

Seealso
MCP Deployment Guide: Deploy ExternalDNS for Kubernetes

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 98

https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/deploy-mcp-cluster-using-drivetrain/deploy-k8s/external-dns.html

OpenContrail

Caution!

The OpenContrail versions support status:

• OpenContrail 4.1 is fully supported.
• OpenContrail 4.0 is deprecated and not supported for new deployments since MCP

maintenance update 2019.2.4.
• OpenContrail 3.2 is not supported for new deployments.

OpenContrail is a highly scalable distributed Software Defined Networking (SDN) solution for
MCP. It provides NFV capabilities as well as powerful network analytics and visualization of
results through a web UI. OpenContrail cluster is integrated with to provision, orchestrate, and
deploy high-performance clusters with various networking features.

Caution!

OpenContrail 4.x for Kubernetes 1.12 or later is not supported.

The following table describes the main features of OpenContrail in comparison with OVS for
OpenStack:

Feature name OpenContrail OVS
Encapsulation MPLSoGRE, MPLSoUDP,

VXLAN
VLAN, VXLAN, GRE, Geneve

Security and multitenancy Native overlay, label,
namespaces

Native overlay, label,
namespaces

Multi-cloud Bare metal, VMs, containers Bare metal, VMs, containers
Network analytics Yes No
NFV Yes Yes
Dataplane acceleration DPDK, SR-IOV DPDK, SR-IOV
Extra features Bare metal extensions,

L2VPN, L3VPN
LBaaS

Limitations
The OpenContrail deployment in MCP includes the following limitations:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 99

• OpenContrail does not support tenant renaming due to architecture limitations.
• OpenContrail does not support parallel addition and removal of rules to and from security

groups.
• By default, one worker of the contrail-api service is used. If needed, you can enable multiple

workers in your Reclass cluster model, but this setting requires the
keystone_sync_on_demand=false option that allows fixing the issue with the
synchronization of the information about the OpenStack projects. Be aware that with such a
configuration, you can start setting network entities in a newly created OpenStack project
only one minute after this project is created.
To set multiple workers with the keystone_sync_on_demand=false option, refer to MCP
Operations Guide: Set multiple contrail-api workers.

• Fixed in 2019.2.3 In the MCP Build ID 2019.2.0, by default, one worker of the contrail-api
service is used. If needed, you can enable multiple workers in your Reclass cluster model,
but this setting requires the keystone_sync_on_demand=false option that allows fixing the
issue with the synchronization of the information about the OpenStack projects. Be aware
that with such a configuration, you can start setting network entities in a newly created
OpenStack project only one minute after this project is created.
To set multiple workers with the keystone_sync_on_demand=false option, refer to MCP
Operations Guide: Set multiple contrail-api workers.
Starting from the MCP 2019.2.3 update, by default, six workers of the contrail-api service
are used and you do not need the keystone_sync_on_demand=false option to be enabled
for multiple workers. Therefore, the limitation described above is removed.

OpenContrail cluster overview
OpenContrail provides the following types of networking to an OpenStack environment running
on MCP cluster:

• Basic networking that includes IP address management, security groups, floating IP
addresses, and so on

• Advanced networking that includes DPDK network virtualization and SR-IOV
OpenContrail is based on the overlay networking, where all containers are connected to a virtual
network with encapsulation (MPLSoGRE, MPLSoUDP, VXLAN).
In the current network model, the OpenContrail vRouter uses different gateways for the control
and data planes.

Caution!

The OpenContrail versions support status:

• OpenContrail 4.1 is fully supported.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 100

https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations/ops-oc4-specific/enable-multiworkers.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations/ops-oc4-specific/enable-multiworkers.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations/ops-oc4-specific/enable-multiworkers.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/opencontrail-operations/ops-oc4-specific/enable-multiworkers.html

• OpenContrail 4.0 is deprecated and not supported for new deployments since MCP
maintenance update 2019.2.4.

• OpenContrail 3.2 is not supported for new deployments.

OpenContrail 3.2 cluster overview

Caution!

The OpenContrail versions support status:

• OpenContrail 4.1 is fully supported.
• OpenContrail 4.0 is deprecated and not supported for new deployments since MCP

maintenance update 2019.2.4.
• OpenContrail 3.2 is not supported for new deployments.

An OpenContrail 3.2 cluster contains the following types of nodes:

• Controller node
Includes package-based services of OpenContrail, such as the API server and
configuration database.

• Analytics node
Includes package-based services for OpenContrail metering and analytics, such as the
Cassandra database for analytics and data collectors.

• vRouter node
A forwarding plane that runs in the hypervisor of a compute node. It extends the
network from the physical routers and switches into a virtual overlay network hosted on
compute nodes.

• Gateway node
A physical or virtual gateway router that provides access to an external network.

The following diagram describes the minimum production installation of OpenContrail 3.2 with
OpenStack for MCP:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 101

OpenContrail 4.x cluster overview

Caution!

The OpenContrail versions support status:

• OpenContrail 4.1 is fully supported.
• OpenContrail 4.0 is deprecated and not supported for new deployments since MCP

maintenance update 2019.2.4.
• OpenContrail 3.2 is not supported for new deployments.

In OpenContrail 4.x, the OpenContrail controller and analytics modules are delivered as
containers to reduce the complexity of the OpenContrail deployment and to group the related
OpenContrail components.
Each container has an INI-based configuration file that is available on the host system and
mounted within a specific container.
The OpenContrail containers run with the host network, without using a Docker bridge. All
services within a container listen on the host network interface.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 102

Note
For the sake of visual clarity, the diagrams in this section illustrate only the OpenContrail
architecture with OpenStack. The diagrams presuppose the DriveTrain and StackLight
LMA nodes.

The following diagram describes the minimum production installation of OpenContrail 4.x with
OpenStack for MCP.

An OpenContrail 4.x cluster for OpenStack contains the following types of entities:

• Controller Docker container
Includes the package-based OpenContrail services, such as the API server and
configuration database. Runs on top of the ntw virtual machine as a Docker container
initialized by docker-compose.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 103

• Analytics Docker container
Includes the OpenContrail metering and analytics package-based services, such as
analytics API, alarm generator and data collector. Runs on top of the nal virtual machine
as a Docker container initialized by docker-compose.

• Analyticsdb Docker container
Includes the OpenContrail metering and analytics package-based services. This
container includes a database for Analytics container, Kafka, and ZooKeeper. Runs on
top of the nal virtual machine as a Docker container initialized by docker-compose.

• vRouter node
A forwarding plane that runs in the hypervisor of a compute node. It extends the
network from the physical routers and switches into a virtual overlay network hosted on
compute nodes.

• Gateway node
A physical or virtual gateway router that provides access to an external network.

Seealso
Official Juniper documentation

OpenContrail components

Caution!

The OpenContrail versions support status:

• OpenContrail 4.1 is fully supported.
• OpenContrail 4.0 is deprecated and not supported for new deployments since MCP

maintenance update 2019.2.4.
• OpenContrail 3.2 is not supported for new deployments.

The difference between components in the specified OpenContrail versions is as follows:

• In OpenContrail 3.2, services run as supervisor or non-supervisor services. In OpenContrail
4.x, all services run as systemd services in a Docker container.

• In OpenContrail 4.x, the ifmap-server and contrail-discovery services are absent as
compared to OpenContrail 3.2.

The OpenContrail services are distributed across several MCP cluster nodes:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 104

https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/containers-overview.html

• For both versions of OpenContrail, the control, config, analytics, and database services run
on the OpenContrail controller (ntw) and analytics (nal) nodes.

• The vrouter OpenContrail services run on the OpenStack compute nodes (cmp).
• The OpenContrail plugin is included to the neutron-server service that runs on the

OpenStack controller nodes (ctl).
This section describes the OpenContrail 3.2 and 4.x services as well as their distribution across
the MCP cluster nodes.

OpenContrail 3.2 components

Caution!

The OpenContrail versions support status:

• OpenContrail 4.1 is fully supported.
• OpenContrail 4.0 is deprecated and not supported for new deployments since MCP

maintenance update 2019.2.4.
• OpenContrail 3.2 is not supported for new deployments.

The tables in this section describe the OpenContrail 3.2 services and their distribution across the
MCP cluster nodes.

The supervisor control services, OpenContrail controller node

Service name Service description
contrail-control Communicates with the cluster gateways using BGP and with the

vRouter agents using XMPP as well as redistributes appropriate
networking information.

contrail-control-nodemgr Collects the OpenContrail controller process data and sends this
information to the OpenContrail collector.

contrail-dns Using the contrail-named service, provides the DNS service to the
VMs spawned on different compute nodes. Each vRouter node
connects to two OpenContrail controller nodes that run the
contrail-dns process.

contrail-named This is the customized Berkeley Internet Name Domain (BIND)
daemon of OpenContrail that manages DNS zones for the
contrail-dns service.

The non-supervisor config and control services, OpenContrail controller node

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 105

Service name Service description
contrail-webui Consists of the webserver and jobserver services. Provides the

OpenContrail web UI.
ifmap-server Removed in OpenContrail 4.x. The contrail-control,

contrail-schema, contrail-svc-monitor services connect to the
Interface for Metadata Access Points (IF-MAP) server using this
service during configuration changes.

The supervisor config services, OpenContrail controller node

Service name Service description
contrail-api Exposes a REST-based interface for the OpenContrail API.
contrail-config-nodemgr Collects data of the OpenContrail configuration processes and

sends it to the OpenContrail collector.
contrail-device-manager Manages physical networking devices using netconf or ovsdb. In

multi-node deployments, it works in the active/backup mode.
contrail-discovery Removed in OpenContrail 4.x. Acts as a registry for all

OpenContrail services.
contrail-schema Listens to configuration changes done by a user and generates

corresponding system configuration objects. In multi-node
deployments, it works in the active/backup mode.

contrail-svc-monitor Listens to configuration changes of service-template and
service-instance as well as spawns and monitors virtual machines
for the firewall, analyzer services and so on. In multi-node
deployments, it works in the active/backup mode.

The supervisor analytics services, OpenContrail analytics node

Service name Service description
contrail-alarm-gen Evaluates and manages the alarms rules.
contrail-analytics-api Provides a REST API to interact with the Cassandra analytics

database.
contrail-analytics-nodem
gr

Collects all OpenContrail analytics process data and sends this
information to the OpenContrail collector.

contrail-collector Collects and analyzes data from all OpenContrail services.
contrail-query-engine Handles the queries to access data from the Cassandra database.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 106

contrail-snmp-collector Receives the authorization and configuration of the physical
routers from the contrail-config-nodemgr service, polls the
physical routers using the Simple Network Management Protocol
(SNMP) protocol, and uploads the data to the OpenContrail
collector.

contrail-topology Reads the SNMP information from the physical router user-visible
entities (UVEs), creates a neighbor list, and writes the neighbor
information to the physical router UVEs. The OpenContrail web UI
uses the neighbor list to display the physical topology.

The supervisor database services, OpenContrail controller and analytics nodes

Service name Service description
contrail-database Manages the Cassandra database information.
contrail-database-nodem
gr

Collects data of the contrail-database process and sends it to the
OpenContrail collector.

kafka Handles the messaging bus and generates alarms across the
OpenContrail analytics nodes.

The non-supervisor database services, OpenContrail controller and analytics nodes

Service name Service description
cassandra On the OpenContrail network nodes, maintains the configuration

data of the OpenContrail cluster. On the OpenContrail analytics
nodes, stores the contrail-collector service data.

redis Stores the physical router UVE storage and serves as a messaging
bus for event notifications.

zookeeper Holds the active/backup status for the contrail-device-manager,
contrail-svc-monitor, and the contrail-schema-transformer
services. This service is also used for mapping of the OpenContrail
resources names to UUIDs.

The supervisor vrouter services, OpenStack compute nodes

Service name Service description
contrail-vrouter-agent Connects to the OpenContrail controller node and the

OpenContrail DNS system using the Extensible Messaging and
Presence Protocol (XMPP).

contrail-vrouter-nodemgr Collects the supervisor vrouter data and sends it to the
OpenContrail collector.

The OpenContrail plugin services, OpenStack controller nodes

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 107

Service name Service description
neutron-server The Neutron server that includes the OpenContrail plugin.

OpenContrail 4.x components
The tables in this section describe the OpenContrail 4.x services and their distribution across the
OpenStack-based MCP cluster nodes.
The OpenContrail services run as the analytics, analyticsdb, and controller fat Docker containers
managed by docker-compose with the exception of contrail-vrouter-agent running on the
compute nodes as a non-containerized service.

The config and control services, OpenContrail controller containers

Service name Service description
contrail-api Exposes a REST-based interface for the OpenContrail API.
contrail-config-nodemgr Collects data of the OpenContrail configuration processes and

sends it to the OpenContrail collector.
contrail-control Communicates with the cluster gateways using BGP and with the

vRouter agents using XMPP as well as redistributes appropriate
networking information.

contrail-control-nodemgr Collects the OpenContrail controller process data and sends this
information to the OpenContrail collector.

contrail-device-manager Manages physical networking devices using netconf or ovsdb. In
multi-node deployments, it works in the active/backup mode.

contrail-discovery Deprecated. Acts as a registry for all OpenContrail services.
contrail-dns Using the contrail-named service, provides the DNS service to the

VMs spawned on different compute nodes. Each vRouter node
connects to two OpenContrail controller containers that run the
contrail-dns process.

contrail-named This is the customized Berkeley Internet Name Domain (BIND)
daemon of OpenContrail that manages DNS zones for the
contrail-dns service.

contrail-schema Listens to configuration changes done by a user and generates
corresponding system configuration objects. In multi-node
deployments, it works in the active/backup mode.

contrail-svc-monitor Listens to configuration changes of service-template and
service-instance as well as spawns and monitors virtual machines
for the firewall, analyzer services and so on. In multi-node
deployments, it works in the active/backup mode.

contrail-webui Consists of the webserver and jobserver services. Provides the
OpenContrail web UI.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 108

ifmap-server Deprecated. The contrail-control, contrail-schema,
contrail-svc-monitor services connect to the Interface for Metadata
Access Points (IF-MAP) server using this service during
configuration changes.

The analytics services, OpenContrail analytics containers

Service name Service description
contrail-alarm-gen Evaluates and manages the alarms rules.
contrail-analytics-api Provides a REST API to interact with the Cassandra analytics

database.
contrail-analytics-nodem
gr

Collects all OpenContrail analytics process data and sends this
information to the OpenContrail collector.

contrail-collector Collects and analyzes data from all OpenContrail services.
contrail-query-engine Handles the queries to access data from the Cassandra database.
contrail-snmp-collector Receives the authorization and configuration of the physical

routers from the contrail-config-nodemgr service, polls the
physical routers using the Simple Network Management Protocol
(SNMP) protocol, and uploads the data to the OpenContrail
collector.

contrail-topology Reads the SNMP information from the physical router user-visible
entities (UVEs), creates a neighbor list, and writes the neighbor
information to the physical router UVEs. The OpenContrail web UI
uses the neighbor list to display the physical topology.

The database services, OpenContrail controller and analytics containers

Service name Service description
cassandra On the OpenContrail network nodes and OpenContrail pods,

maintains the configuration data of the OpenContrail cluster. On
the OpenContrail analytics containers, stores the contrail-collector
service data.

contrail-database Manages the Cassandra database information.
contrail-database-nodem
gr

Collects data of the contrail-database process and sends it to the
OpenContrail collector.

kafka Handles the messaging bus and generates alarms across the
OpenContrail analytics containers.

redis Stores the physical router UVE storage and serves as a messaging
bus for event notifications.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 109

zookeeper Holds the active/backup status for the contrail-device-manager,
contrail-svc-monitor, and the contrail-schema-transformer
services. This service is also used for mapping of the OpenContrail
resources names to UUIDs.

The vrouter services, OpenStack compute nodes

Service name Service description
contrail-vrouter-agent Connects to the OpenContrail controller container and the

OpenContrail DNS system using the Extensible Messaging and
Presence Protocol (XMPP).

contrail-vrouter-nodemgr Collects the supervisor vrouter data and sends it to the
OpenContrail collector.

The OpenContrail plugin services, OpenStack controller nodes

Service name Service description
neutron-server The Neutron server that includes the OpenContrail plugin.

OpenContrail traffic flow
This section provides diagrams that describe types of traffic and the directions of traffic flow in
an MCP cluster.

User Interface and API traffic
The following diagram displays all types of UI and API traffic in an MCP cluster, including
monitoring, OpenStack API, and OpenContrail UI/API traffic. The OpenStack Dashboard node
hosts Horizon and acts as proxy for all other types of traffic. SSL termination occurs on this node
as well.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 110

SDN traffic
SDN or OpenContrail traffic goes through the overlay Data network and processes east-west and
north-south traffic for applications that run in an MCP cluster. This network segment typically
contains tenant networks as separate MPLS over GRE and MPLS over UDP tunnels. The traffic
load depends on workload.
The control traffic between OpenContrail controllers, edge routers, and vRouters use iBGP and
XMPP protocols. Both protocols produce low traffic which does not affect the MPLS over GRE and
MPLS over UDP traffic. However, this traffic is critical and must be reliably delivered. Mirantis
recommends configuring higher QoS for this type of traffic.
The following diagram displays both MPLS over GRE/MPLS over UDP and iBGP and XMPP traffic
examples in an MCP cluster:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 111

OpenContrail vRouter
The OpenContrail vRouter provides data forwarding to an OpenStack tenant instance and reports
statistics to the OpenContrail analytics nodes. The OpenContrail vRouter is installed on all
OpenStack compute nodes.
In MCP, the OpenContrail vRouter can be either kernel-based or DPDK-based. You can configure
a node(s) before deployment to use the DPDK vRouter mode instead of the regular kernel mode.
This option allows different nodes to use different modules of the OpenContrail vRouter. Using
DPDK with OpenContrail allows processing more packets per second in comparison to the
regular kernel module.
The vRouter agent acts as a local control plane. Each OpenContrail vRouter agent is connected
to at least two OpenContrail control nodes in an active-active redundancy mode. The
OpenContrail vRouter agent is responsible for all networking-related functions including routing
instances, routes, and so on.
The OpenContrail vRouter uses different gateways for the control and data planes. For example,
the Linux system gateway is located on the management network, and the OpenContrail
gateway is located on the data plane network.
The following diagram shows the OpenContrail kernel vRouter setup by Cookiecutter:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 112

On the diagram above, the following types of networks interfaces are used:

• eth0 - for the management (PXE) network (eth1 and eth2 are the slave interfaces of Bond0)
• Bond0.x - for the MCP control plane network
• Bond0.y - for the MCP data plane network

Seealso
MCP Deployment Guide: Enable OpenContrail DPDK

OpenContrail HAProxy driver with LBaaSv2
The OpenContrail HAProxy driver with Load Balancing as a Service (LBaaS) is implemented as a
special type of service instance.
The load balancer service is implemented as a network namespace with HAProxy. The service
runs on two randomly chosen vRouter compute nodes to achieve high availability.
The load balancer service has two sides:

• Right that is the public side
• Left that is the private side (for the back-end and pool subnet)

In LBaaS v1, the left side subnet is determined automatically from the subnet_id of a pool. But in
LBaaS v2, the pool does not associate with subnet anymore. Therefore, to overcome this
architecture limitation, the pool members of the left side and listener of the right side should be
associated with the same subnet.
The OpenContrail HAProxy driver provides the benefits of LBaaS v2 API along with listening of
multiple ports for the same IP address by decoupling the virtual IP address from the physical
port.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 113

https://docs.mirantis.com/mcp/q4-18/mcp-deployment-guide/advanced-config/enable-nfv/enable-dpdk/enable-dpdk-opencontrail.html

OpenContrail HAProxy driver supports the following configuration options:

Component Option
Listener protocols

• TCP
• HTTP

Load balancer algorithms
• ROUND_ROBIN
• LEAST_CONNECTIONS
• SOURCE_IP

Health monitor types
• PING
• TCP
• HTTP

Session persistence
• SOURCE_IP
• HTTP_COOKIE
• APP_COOKIE

OpenContrail IPv6 support
OpenContrail allows running IPv6-enabled OpenStack tenant networks on top of IPv4 underlay.
You can create an IPv6 virtual network through the OpenContrail web UI or OpenStack CLI in the
same way as the IPv4 virtual network. The IPv6 functionality is enabled out of the box and does
not require major changes in the cloud configuration. For an example of user workflow, see
OpenStack Neutron IPv6 support in OpenContrail SDN.
The following IPv6 features are supported and regularly verified as part of MCP:

• Virtual machines with IPv6 and IPv4
interfaces

• Virtual machines with IPv6-only
interfaces

• DHCPv6 and neighbor discovery
• Policy and Security groups

The following IPv6 features are available in OpenContrail according to the official
documentation:

• IPv6 flow set up, tear down, and aging
• Flow set up and tear down based on TCP

state machine
• Protocol-based flow aging
• Fat flow
• Allowed address pair configuration with

IPv6 addresses

• IPv6 service chaining
• Equal Cost Multi-Path (ECMP)
• Connectivity with gateway (MX Series

device)
• Virtual Domain Name Services (vDNS),

name-to-IPv6 address resolution
• User-Visible Entities (UVEs)

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 114

https://www.mirantis.com/blog/openstack-neutron-ipv6-support-opencontrail-sdn/

The following IPv6 features are not available in OpenContrail:

• Any IPv6 Network Address Translation
(NAT)

• Load Balancing as a Service (LBaaS)
• IPv6 fragmentation
• Floating IPv6 address

• Link-local and metadata services
• Diagnostics for IPv6
• Contrail Device Manager
• Virtual customer premises equipment

(vCPE)

Seealso
Official Juniper documentation: Support for IPv6 Networks in Contrail

Seealso
Understanding OpenContrail Architecture

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 115

https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/ipv6-networks-vnc.html
https://www.juniper.net/documentation/en_US/day-one-books/OpenContrailBook.pdf

StackLight LMA
StackLight LMA is the Logging, Monitoring, and Alerting solution that provides a single pane of
glass for cloud maintenance and day-to-day operations as well as offers critical insights into
cloud health including rich operational insights about the services deployed on MCP. StackLight
LMA is based on Prometheus, an open-source monitoring solution and a time series database.

StackLight LMA overview
StackLight LMA monitors nodes, services, cluster health, and provides reach operational insights
out-of-the-box for OpenStack, Kubernetes, and OpenContrail services deployed on the platform.
Stacklight LMA helps to prevent critical conditions in the MCP cluster by sending notifications to
cloud operators so that they can take timely actions to eliminate the risk of service downtime.
Stacklight LMA uses the following tools to gather monitoring metrics:

• Telegraf, a plugin-driven server agent that monitors the nodes on which the MCP cluster
components are deployed. Telegraf gathers basic operating system metrics, including:

• CPU
• Memory
• Disk
• Disk I/O
• System
• Processes
• Docker

• Prometheus, a toolkit that gathers metrics. Each Prometheus instance automatically
discovers and monitors a number of endpoints such as Kubernetes, etcd, Calico, Telegraf,
and others. For Kubernetes deployments, Prometheus discovers the following endpoints:

• Node, discovers one target per cluster node.
• Service, discovers a target for each service port.
• Pod, discovers all pods and exposes their containers as targets.
• Endpoint, discovers targets from listed endpoints of a service.

By default, the Prometheus database stores metrics of the past 15 days. To store the data in
a long-term perspective, consider one of the following options:

• (Default) Prometheus long-term storage, which uses the federated Prometheus to store
the metrics (six months)

• InfluxDB, which uses the remote storage adapter to store the metrics (30 days)

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 116

Warning
InfluxDB, including InfluxDB Relay and remote storage adapter, is deprecated in
the Q4`18 MCP release and will be removed in the next release.

Using the Prometheus web UI, you can view simple visualizations, debug, add new features
such as alerts, aggregates, and others. Grafana dashboards provide a visual representation
of all graphs gathered by Telegraf and Prometheus.

Seealso

• Prometheus official documentation
• Telegraf official documentation

The link points to the documentation of the latest Telegraf version. View the Telegraf
documentation of the version that is supported by a relevant MCP release.

StackLight LMA components
StackLight LMA consists of the following components:
Prometheus server

Collects and stores monitoring data. A Prometheus server scrapes metrics from Telegraf,
exporters, and native endpoints, such as Calico, etcd, or Kubernetes, either directly or
through Pushgateway. Prometheus stores all scraped samples in a local database and runs
rules over this data to either record new time series from existing data or generate alerts.
Prometheus stores the data as time series: streams of time-stamped values that belong to
the same metric and the same set of labeled dimensions. Timestamps have a millisecond
resolution, while values are always 64-bit floats. Prometheus has a dimensional data model.
Any given combination of labels for the same metric name results in a separate time series.
The Prometheus Query Language (PromQL) enables filtering and aggregation based on
these dimensions. Grafana uses the data stored in Prometheus to provide graphs and charts.
The built-in alarms defined in Salt formulas detect the most critical conditions that may
occur. However, using the Reclass model you can modify and override the built-in alarms as
well as create custom alarms for a specific deployment. Both built-in and custom alarms use
the same declarative YAML structure.
If more than one instance of Prometheus is deployed, they perform as independent
Prometheus servers not connected to each other. However, these instances gather the same
endpoints. Therefore, in case of any failure in one Prometheus server, another Prometheus
server will contain the same data in the database.

Alertmanager

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 117

https://prometheus.io/docs/introduction/overview/
https://docs.influxdata.com/telegraf
https://prometheus.io/docs/practices/rules/

Handles alerts sent by client applications such as the Prometheus server. Alertmanager
deduplicates, groups, and routes alerts to receiver integrations. By default, StackLight LMA
is configured to send email notifications. However, you can also configure it to create
Salesforce cases from the Alertmanager notifications on alerts using the Salesforce notifier
service and close the cases once the alerts are resolved. Notifications can be configured
separately for any alert. Alertmanager also performs silencing and inhibition of alerts.

Alerta
Receives, consolidates and deduplicates the alerts sent by Alertmanager and visually
represents them through a simple yet effective web UI. Using Alerta, you can easily view the
most recent alerts, watched alerts, as well as group and filter alerts according to your needs.
Alerta uses MongoDB as a backend.

Telegraf and exporter agents
Collect metrics from the system they are running on. Telegraf runs on every host operating
system and on every VM where certain services of MCP are deployed. Telegraf collects and
processes the operational data that is relevant to the scope of a node including hardware,
host operating system metrics, local service checks, and measurements. Telegraf is
plugin-driven and has the concept of two distinct set of plugins:

• Input plugins collect metrics from the system, services, or third-party APIs
• Output plugins write and expose metrics to various destinations

Pushgateway
Enables ephemeral and batch jobs to expose their metrics to Prometheus. Since these jobs
may not exist long enough to be scraped, they can instead push their metrics to the
Pushgateway, which then exposes these metrics to Prometheus. Pushgateway is not an
aggregator or a distributed counter but rather a metrics cache. The metrics pushed are
exactly the same as scraped from a permanently running program.

Grafana
Builds and visually represents metric graphs based on time series databases. Grafana
supports querying of Prometheus using the PromQL language.

Long-term storage system
Uses one of the following set of components to store the data for further analysis:

• Prometheus long-term storage that scrapes all data from the Prometheus server. This
historical data can then be used for analytics purposes. Prometheus Relay adds a proxy
layer to Prometheus to merge the results from underlay Prometheus servers to prevent
gaps in case some data is missing on some servers. Grafana uses the data from
Prometheus long-term storage. This approach is used by default.

• InfluxDB Deprecated in Q4`18 long-term storage that scrapes the data using the remote
storage adapter. This historical data can then be used for analytics purposes. InfluxDB
Relay adds a basic high availability layer to InfluxDB by replicating the InfluxDB data to
a cluster of InfluxDB servers.

Logging system
Responsible for collecting, processing, and persisting the logs. The logging system
components include:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 118

• Fluentd (log collector), which parses logs, sends them to Elasticsearch, generates
metrics based on analysis of incoming log entries, and exposes these metrics to
Prometheus. Fluentd runs on every node in a cluster.

• Elasticsearch, which stores logs and notifications, and Elasticsearch Curator, which
maintains the data (indexes) in Elasticsearch by performing such operations as
creating, closing, or opening an index as well as deleting a snapshot. Additionally,
Elasticsearch Curator can also manage the data retention policy in Elasticsearch
clusters. Elasticsearch Curator runs on each Elasticsearch node within the log storage
nodes.

The metrics derived from logs are used to alert the operator upon abnormal conditions such
as a spike of HTTP 5xx errors. Elasticsearch receives and indexes the logs for viewing and
searching in Kibana.

Gainsight integration service Deprecated since 2019.2.9

You can integrate StackLight LMA with Gainsight. Gainsight integration service queries
Prometheus for the following metrics data, combines the data into a single CSV file, and
sends the file to the Salesforce Gainsight extension through API:

• The amount of vCPU, vRAM, and vStorage used and available
• The number of VMs running, compute nodes, and tenants/projects
• The availability of Cinder, Nova, Keystone, Glance, and Neutron

By default, Gainsight integration service sends the data to API once per day. Mirantis uses
the collected data for further analysis and reports to improve the quality of customer
support. The CSV files are stored under /srv/volumes/local/gainsight/csv on the mon nodes
for 180 days by default.

Prometheus Elasticsearch exporter 13

Allows presenting the Elasticsearch data as Prometheus metrics by periodically sending
configured queries to the Elasticsearch cluster and exposing the results to a scrapable HTTP
endpoint like other Prometheus targets.

The following diagram illustrates data flow and connections between the StackLight LMA
services. Prometheus long-term storage is illustrated as the default option.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 119

The Prometheus, Pushgateway, Alertmanager, Alerta, Grafana, Gainsight, and Prometheus
Elasticsearch exporter services run on a separate Docker Swarm Mode cluster deployed on the
monitoring VMs. The following diagram illustrates the composition of StackLight LMA
components across all MCP services. Prometheus long-term storage is illustrated as the default
option.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 120

The following table lists the roles of StackLight LMA VCP nodes and their names in the Salt
Reclass metadata model:

StackLight LMA nodes

Server role name
Server role
group name
in Reclass

model
Description

StackLight LMA metering node mtr Servers that run Prometheus
long-term storage.

StackLight LMA log storage and
visualization node

log Servers that run Elasticsearch and
Kibana.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 121

StackLight LMA monitoring node mon Servers that run the Prometheus,
Grafana, Pushgateway,
Alertmanager, Alerta, and Gainsight
integration (optional) services in
containers in Docker Swarm mode.

13 The functionality is available starting from the MCP 2019.2.4 maintenance
update.

StackLight LMA high availability
High availability in StackLight LMA is achieved through the deployment of three Prometheus
servers, Prometheus Relay service, and InfluxDB Relay service.

Warning
InfluxDB, including InfluxDB Relay and remote storage adapter, is deprecated in the
Q4`18 MCP release and will be removed in the next release.

To ensure high availability for Prometheus, StackLight LMA deploys three Prometheus servers at
the same time. Each Prometheus server uses the same configuration file, monitors the same
endpoints, and has the same alerts defined. The Alertmanager service deduplicates the fired
alerts, so you will receive one alert instead of three.
For external components such as Grafana, the Prometheus Relay service handles Prometheus
API calls, sends them to all discovered Prometheus servers, merges the results, and returns
them to Grafana to visualize the data from all Prometheus servers. Therefore, if one Prometheus
servers is down, Grafana will contain the data from the remaining Prometheus servers.
The following diagram illustrates the Prometheus HA.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 122

High availability for Prometheus long-term storage is achieved by scraping the same data in an
independent way. In case one Prometheus server fails, the other two will contain the data. To
keep the time series gapless, Prometheus Relay acts as a proxy and merges the results from
three underlay Prometheus servers.
High availability for the InfluxDB service is achieved using the InfluxDB Relay service that listens
to HTTP writes and sends the data to each InfluxDB server through the HTTP write endpoint.
InfluxDB Relay returns a success response once one of the InfluxDB servers returns it. If any
InfluxDB server returns a 4xx response or if all servers return a 5xx response, it will be returned
to the client. If some but not all servers return a 5xx response, it will not be returned to the
client.
This approach allows sustaining failures of one InfluxDB or one InfluxDB Relay service while
these services will still perform writes and serve queries. InfluxDB Relay buffers failed requests
in memory to reduce the number of failures during short outages or periodic network issues.

Monitored components
StackLight LMA measures, analyzes, and reports in a timely manner everything that may fail in
any of the devices, resources, and services running in the standalone or cluster mode on top of
the infrastructure clusters of Mirantis Cloud Platform.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 123

StackLight LMA monitors the following components and their sub-components, if any:

• Linux operating system
• Linux operating system and audit logs
• Salt Master node
• Salt Minion node
• Jenkins
• RabbitMQ
• Apache
• Keepalived
• libvirt
• Memcached
• MySQL
• HAProxy
• NGINX
• NTP
• GlusterFS
• Physical disks, SSD, or HDDs, which provide SMART data 14

• SSL certificates 14

• Open vSwitch 14

• OpenStack (Nova, Cinder, Glance, Neutron, Keystone, Horizon, Heat, Octavia, Ironic 15)
• OpenContrail (Cassandra, Contrail server, ZooKeeper)
• Kubernetes (Kube-apiserver, Kube-controller-manager, Kube-proxy, Kube-scheduler,

Kubelet, Docker, etcd)
• Calico (Felix, BIRD, confd)
• Ceph (OSD, ceph-mon)
• StackLight LMA (Alertmanager, InfluxDB, InfluxDB Relay, Elasticsearch, Heka, Grafana,

Kibana, Prometheus, Pushgateway, Telegraf, remote storage adapter, MongoDB)

Warning
InfluxDB, including InfluxDB Relay and remote storage adapter, is deprecated in the
Q4`18 MCP release and will be removed in the next release.

14(1, 2, 3) Monitoring of the functionality is available starting from the MCP 2019.2.3
update.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 124

15 Monitoring of Ironic is available starting from the MCP 2019.2.6 maintenance
update.

StackLight LMA resource requirements per cloud size
Compact cloud
The following table summarizes resource requirements of all StackLight LMA node roles for
compact clouds (up to 50 compute nodes and Ceph OSD nodes, if any).

Resource requirements per StackLight LMA role for compact cloud

Virtual
server roles

of
instances

CPU vCores
per

instance

Memory
(GB) per
instance

Disk space
(GB) per
instance

Disk type

mon 3 4 16 500 16 SSD
mtr 3 4 32 1000 16 SSD
log 3 4 32 2000 17 SSD

Cloud Provider Infrastructure (CPI)
The following table summarizes resource requirements of all StackLight LMA node roles for CPI
clouds (50 - 150 compute nodes and Ceph OSD nodes, if any).

Resource requirements per StackLight LMA role for CPI

Virtual
server roles

of
instances

CPU vCores
per

instance

Memory
(GB) per
instance

Disk space
(GB) per
instance

Disk type

mon 3 8 32 500 16 SSD
mtr 3 8 32 2000 16 SSD
log 3 8 48 3000 17 SSD

Large cloud
The following table summarizes resource requirements of all StackLight LMA node roles for large
clouds (200 - 500 compute nodes and Ceph OSD nodes, if any).

Resource requirements per StackLight LMA role for large cloud

Virtual
server roles

of
instances

CPU vCores
per

instance

Memory
(GB) per
instance

Disk space
(GB) per
instance

Disk type

mon 3 24 256 1000 16 SSD
mtr 3 16 196 3000 16 SSD

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 125

log 3 16 64 18 5000 17 SSD

16(1, 2, 3, 4, 5,
6)

The required disk space per instance depends on the Prometheus retention
policy, which by default is 5 days for mon nodes and 180 days for mtr nodes.

17(1, 2, 3) The required disk space per instance depends on the Elasticsearch retention
policy, which is 31 days by default.

18 The Elasticsearch heap size must not exceed 32 GB. For details, see Limiting
memory usage. To limit the heap size, see MCP Operations Guide: Configure
Elasticsearch.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 126

https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_limiting_memory_usage.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-stacklight/configure-logging-system-components/configure-elasticsearch.html
https://docs.mirantis.com/mcp/q4-18/mcp-operations-guide/lma/configure-stacklight/configure-logging-system-components/configure-elasticsearch.html

Repository planning
The MCP software is provided as a combination of the following types of artifacts:

• Mirantis APT/DEB Packages
The binary packages for Ubuntu Linux operating system. These packages are built and
maintained by Mirantis. They are published to package repositories in APT package
manager format.

• Third party mirrors
Binary Debian packages provided by a vendors of specific software product integrated
into MCP. Typically, those are free open source software projects. These mirror
repositories retain the original content and metadata structure provided by vendor of
the repository.

• Plaintext/Git repository
Plain text artifacts are usually kept in Git repositories. Examples of such artifact include
the Reclass metadata model and Jenkins Pipelines delivered as a source code.

• Docker images
Binary images of containers run by Docker daemon. These images are rebuilt by
Mirantis or mirrored as is from their original vendors.

The MCP Release Notes: Release artifacts section describes the repositories and Docker registry
sources in detail. The Salt Master node requires access to APT, Docker, and Git repositories,
while all other nodes in the environment require access to the APT and Docker repositories only.
Even though it is possible to use the Mirantis and mirrors of the third-party repositories directly
with the Internet access, Mirantis recommends using local mirrors for the following reasons:

• Repeatability
You can redeploy clouds exactly the same way including all dependencies.

• Control
You have control over when and which packages to upgrade. By default,
apt-get dist-upgrade updates the packages to the latest available version. And with a
local mirror, you control when a new update is available.

• Security
This is a good security practice not to download artifacts from the Internet but to control
what software gets delivered into the datacenter.

To create the local mirrors and registries, the Internet access is required. Otherwise, you need to
ship all artifacts manually through a medium, such as an external hard drive. For more
information about the local mirror design, see Local mirror design.

Local mirror design
The main scenarios for using local mirrors and registries include:

• Online deployment

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 127

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/release-artifacts.html

There is the Internet access from the DriveTrain node during deployment. DriveTrain is
then used to set up the local mirrors and registries.

• Offline deployment
There is no Internet access from any of the MCP nodes. The local mirrors and registry
are not part of an MCP cluster. The existing local mirrors can be used and populated
with the repositories needed by the MCP deployment. This scenario is more common at
telephone and financial companies.

By default, MCP deploys local mirrors with packages in a Docker container on the DriveTrain
nodes with GlusterFS volumes using the online scenario.
You can manage the local mirrors using the aptly mirror command.

Note
A mirror can only be updated as a whole. Individual package updates are not supported.
The complete mirror of the repositories used in MCP may consume several hundreds of
gigabytes of disk space.

This section explains the details of the scenarios above.
Online deployment
The online deployment scenario assumes that there is the Internet access from the DriveTrain
nodes during deployment. By default, the local Gerrit (Git), aptly, and Docker registry are run as
part of DriveTrain.
The following diagram shows an example of the virtual machines layout:

The high-level workflow for the online deployment using local mirrors is as follows:

1. Create a deployment model that has the default repositories included (requires the Internet
access).

2. Deploy MCP DriveTrain using the MCP Deployment Guide.

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 128

3. Configure the aptly mirror to mirror the repositories described in the MCP Release Notes:
Release artifacts section in the related MCP release documentation.

4. Modify the deployment model to utilize the local mirrors that are provided by DriveTrain.
5. Deploy the MCP cluster using DriveTrain.

Offline deployment
The offline deployment scenario assumes that there is no Internet access from any of the nodes
inside the MCP cluster including DriveTrain. The requirement is that the MCP cluster instead has
access to the already prepared Debian repository, Docker registry, Git server, HTTP server with
QCOW images, and PyPi server.
Mirantis provides a pre-configured QCOW image with already mirrored Debian packages using
Aptly, Docker images using Docker Registry, Git repositories needed for MCP deployment, QCOW
images, and Python packages. The actual content of this image is described in Mirror image
content.

Warning
An offline MCP deployment does not support all possible MCP cluster configurations. For
example, the OpenContrail, Kubernetes, OpenStack Mitaka and Ocata packages are not
available within the scope of an offline MCP deployment. For a list of artifacts available for
an offline deployment, see MCP Release Notes: Release artifacts.

The high-level workflow of the offline deployment is as follows:

1. Create the deployment model using the Model Designer UI as described in the MCP
Deployment Guide checking the offline option (requires the Internet access).

2. Run a VM using the mirror image.
3. Deploy the MCP DriveTrain and MCP OpenStack environment using the MCP Deployment

Guide.

Note
The offline QCOW image enables you to deploy an MCP OpenStack environment with
the services and features as per an OpenStack release version announced in the
corresponding MCP release.

Seealso

• GitLab Repository Mirroring

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 129

https://docs.mirantis.com/mcp/q4-18/mcp-release-notes/release-artifacts.html
https://docs.gitlab.com/ee/workflow/repository_mirroring.html

• The aptly mirror

Mirror image content
The mirror image delivered for the offline MCP deployment includes:

• Preinstalled services
• Mirrored Debian package repositories
• Mirrored Docker images
• Mirrored Git repositories
• Mirrored QCOW images

For a list of mirrored Debian package repositories and Docker images, see the Release artifacts
section of the corresponding MCP release in MCP Release Notes.
The following table describes services and ports for an offline MCP deployment:

Services and ports

Service name Service description Protocol/Port
Aptly Serves Debian Packages HTTP/80
Registry Serves Docker images HTTP/5000
Git Serves Git Repositories HTTP/8088
HTTP Serves QCOW images and other files HTTP/8078

The following table describes mirrored Git repositories for an offline MCP deployment:

Mirrored Git repositories

Repository name 19

rundeck-cis-jobs git@github.com:Mirantis/rundeck-cis-jobs.git
reclass-system-salt-model git@github.com:Mirantis/reclass-system-salt-model 20

pipeline-library git@github.com:Mirantis/pipeline-library
mk-pipelines git@github.com:Mirantis/mk-pipelines

19 The repositories are tagged with MCP_RELEASE
20 To reduce the image size, almost all offline repositories contain lists of

excluded packages compared to online mirrors. To inspect lists of excludes,
refer to the Mirantis Reclass system repository.

The following table describes mirrored QCOW images of an offline MCP deployment:

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 130

https://www.aptly.info/doc/aptly/mirror/
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
mailto:git@github.com
https://github.com/Mirantis/reclass-system-salt-model/tree/master/debmirror/mirror_mirantis_com

Mirrored QCOW images

Image name
ubuntu-14-04-x64-MCP_RELEASE.qcow2
ubuntu-16-04-x64-MCP_RELEASE.qcow2

Mirantis Cloud Platform Reference Architecture

©2025, Mirantis Inc. Page 131

	Copyright notice
	Preface
	Intended audience
	Documentation history

	Introduction
	MCP capabilities
	MCP design
	DriveTrain
	MCP clusters

	Cloud infrastructure
	Infrastructure management capabilities
	Deployment and lifecycle management automation
	LCM pipeline overview
	High availability in DriveTrain
	SaltStack and Reclass metadata model

	Infrastructure nodes overview
	Infrastructure nodes disk layout
	Hardware requirements for Cloud Provider Infrastructure
	Control plane virtual machines
	Networking
	Server networking
	Access networking
	Switching fabric capabilities

	Multi-cluster architecture
	Staging environment

	OpenStack cluster
	OpenStack cloud capabilities
	OpenStack compact cloud
	OpenStack Cloud Provider infrastructure
	OpenStack large cloud
	Virtualized control plane
	Virtualized control plane overview
	OpenStack VCP Core services
	OpenStack VCP extension services
	OpenStack VCP extra services
	Manila storage networking planning
	Ironic planning
	Ironic components
	Ironic network logic
	MCP Ironic supported features and known limitations

	Virtualized control plane layout
	High availability in OpenStack
	Secure OpenStack API

	Compute nodes planning
	OpenStack network architecture
	Selecting a network technology
	Types of networks
	MCP external endpoints
	Storage traffic
	Neutron OVS networking
	Limitations
	Node configuration
	Network node configuration for VXLAN tenant networks
	Network node configuration for VLAN tenant networks

	VCP hosts networking
	Neutron VXLAN tenant networks with network nodes for SNAT (DVR for all)

	Plan the Domain Name System
	Plan load balancing with OpenStack Octavia

	Storage planning
	Image storage planning
	Block storage planning
	Object storage planning
	Ceph planning
	MCP Ceph cluster overview
	Ceph services
	Additional Ceph considerations
	Ceph OSD hardware considerations

	Tenant Telemetry planning
	Heat planning

	Kubernetes cluster
	Kubernetes cluster overview
	Kubernetes cluster components
	Network planning
	Types of networks
	Calico networking considerations
	Network checker overview
	MetalLB support

	Etcd cluster
	High availability in Kubernetes
	Virtual machines as Kubernetes pods
	Limitations
	Virtlet manager
	Virtlet tapmanager
	Virtlet vmwrapper
	Container Runtime Interface Proxy

	OpenStack cloud provider for Kubernetes

	OpenContrail
	Limitations
	OpenContrail cluster overview
	OpenContrail 3.2 cluster overview
	OpenContrail 4.x cluster overview

	OpenContrail components
	OpenContrail 3.2 components
	OpenContrail 4.x components

	OpenContrail traffic flow
	User Interface and API traffic
	SDN traffic

	OpenContrail vRouter
	OpenContrail HAProxy driver with LBaaSv2
	OpenContrail IPv6 support

	StackLight LMA
	StackLight LMA overview
	StackLight LMA components
	StackLight LMA high availability
	Monitored components
	StackLight LMA resource requirements per cloud size

	Repository planning
	Local mirror design
	Mirror image content

