Security information¶
Resolved CVEs, as detailed:
CVE |
Problem details from upstream |
---|---|
An attacker can craft an input to the Parse functions that would be processed non-linearly with respect to its length, resulting in extremely slow parsing. This could cause a denial of service. |
|
An attacker can pass a malicious malformed token which causes unexpected memory to be consumed during parsing. |
|
Matching of hosts against proxy patterns can improperly treat an IPv6 zone ID as a hostname component. For example, when the NO_PROXY environment variable is set to “*.example.com”, a request to “[::1%25.example.com]:80` will incorrectly match and not be proxied. |
|
The net/http package improperly accepts a bare LF as a line terminator in chunked data chunk-size lines. This can permit request smuggling if a net/http server is used in conjunction with a server that incorrectly accepts a bare LF as part of a chunk-ext. |
|
The tokenizer incorrectly interprets tags with unquoted attribute values that end with a solidus character (/) as self-closing. When directly using Tokenizer, this can result in such tags incorrectly being marked as self-closing, and when using the Parse functions, this can result in content following such tags as being placed in the wrong scope during DOM construction, but only when tags are in foreign content (e.g. <math>, <svg>, etc contexts). |
|
Helm is a tool for managing Charts. A chart archive file can be crafted in a manner where it expands to be significantly larger uncompressed than compressed (e.g., >800x difference). When Helm loads this specially crafted chart, memory can be exhausted causing the application to terminate. This issue has been resolved in Helm v3.17.3. |
|
Helm is a package manager for Charts for Kubernetes. A JSON Schema file within a chart can be crafted with a deeply nested chain of references, leading to parser recursion that can exceed the stack size limit and trigger a stack overflow. This issue has been resolved in Helm v3.17.3. |
|
Open Policy Agent (OPA) is an open source, general-purpose policy engine. Prior to version 1.4.0, when run as a server, OPA exposes an HTTP Data API for reading and writing documents. Requesting a virtual document through the Data API entails policy evaluation, where a Rego query containing a single data document reference is constructed from the requested path. This query is then used for policy evaluation. A HTTP request path can be crafted in a way that injects Rego code into the constructed query. The evaluation result cannot be made to return any other data than what is generated by the requested path, but this path can be misdirected, and the injected Rego code can be crafted to make the query succeed or fail; opening up for oracle attacks or, given the right circumstances, erroneous policy decision results. Furthermore, the injected code can be crafted to be computationally expensive, resulting in a Denial Of Service (DoS) attack. This issue has been patched in version 1.4.0. A workaround involves having network access to OPA’s RESTful APIs being limited to localhost and/or trusted networks, unless necessary for production reasons. |
|
containerd is an open-source container runtime. A bug was found in the containerd’s CRI implementation where containerd, starting in version 2.0.1 and prior to version 2.0.5, doesn’t put usernamespaced containers under the Kubernetes’ cgroup hierarchy, therefore some Kubernetes limits are not honored. This may cause a denial of service of the Kubernetes node. This bug has been fixed in containerd 2.0.5+ and 2.1.0+. Users should update to these versions to resolve the issue. As a workaround, disable usernamespaced pods in Kubernetes temporarily. |
|
gorilla/csrf provides Cross Site Request Forgery (CSRF) prevention middleware for Go web applications & services. Prior to 1.7.2, gorilla/csrf does not validate the Origin header against an allowlist. Its executes its validation of the Referer header for cross-origin requests only when it believes the request is being served over TLS. It determines this by inspecting the r.URL.Scheme value. However, this value is never populated for “server” requests per the Go spec, and so this check does not run in practice. This vulnerability allows an attacker who has gained XSS on a subdomain or top level domain to perform authenticated form submissions against gorilla/csrf protected targets that share the same top level domain. This vulnerability is fixed in 1.7.2. |
|
setuptools is a package that allows users to download, build, install, upgrade, and uninstall Python packages. A path traversal vulnerability in PackageIndex is present in setuptools prior to version 78.1.1. An attacker would be allowed to write files to arbitrary locations on the filesystem with the permissions of the process running the Python code, which could escalate to remote code execution depending on the context. Version 78.1.1 fixes the issue. |